{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Well-Mixed Reaction Systems\n",
    "\n",
    "The simulation script described in this chapter is available at [STEPS_Example repository](https://github.com/CNS-OIST/STEPS_Example/blob/master/user_manual/source/well_mixed.ipynb).\n",
    "\n",
    "In this chapter, we'll use some simple classical reaction systems as examples\n",
    "to introduce the basics of using STEPS. More specifically, we'll focus on reaction\n",
    "systems that occur in a single, well-mixed reaction volume. The topics presented\n",
    "in later chapters (such as surface-volume interactions, diffusion, 3D environments,\n",
    "etc) will build on the material presented in this chapter.\n",
    "\n",
    "In our first STEPS simulation, we'll be working with the following simple system,\n",
    "which consists of a single reversible reaction:\n",
    "\n",
    "\\begin{equation}\n",
    "A+B\\underset{{k_{b}}}{\\overset{{k_{f}}}{{\\rightleftarrows}}}C\n",
    "\\end{equation}\n",
    "\n",
    "with 'forward' and 'backward' reaction constants $k_{f}$ and $k_{b}$,\n",
    "respectively.\n",
    "\n",
    "\n",
    "## Model Specification\n",
    "\n",
    "The first thing we need to do, is to write some Python code that “passes”\n",
    "this equation on to STEPS. This is called model specification, which in\n",
    "STEPS consists of building a hierarchy of Python objects that list the species\n",
    "occurring in your model, their relevant chemical and physical properties and\n",
    "their interactions. As explained in the chapter introduction, here we deal only\n",
    "with sets of reaction rules that occur together within one single chemical volume.\n",
    "\n",
    "### Model container\n",
    "\n",
    "The first step in model specification is to import package [steps.model](API_1/API_model.rst).\n",
    "This package contains all the definitions of the objects and functions you need\n",
    "to describe the physics and chemistry of your model within STEPS. This entire\n",
    "package has been written in c++ and exposed to Python through SWIG (Simplified\n",
    "Wrapper and Interface Generator) and Cython, like most packages in STEPS. We import the package\n",
    "using an alias, smodel, to reduce the required amount of typing (a common\n",
    "convention in Python):\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": true,
    "jupyter": {
     "outputs_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "import steps.model as smodel"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "`smodel` now refers to the [steps.model](API_1/API_model.rst) Python module containing the class\n",
    "definitions.\n",
    "\n",
    "Next, we're going to create a top-level container object for our\n",
    "model ([steps.model.Model](API_1/API_model.rst#steps.API_1.model.Model)). This top level container is required for\n",
    "all simulations in STEPS but itself does not contain much information and\n",
    "merely acts as a hub that allows the other objects in the model specification\n",
    "to reference each other. In the code listing below, we store our Model object\n",
    "in variable `mdl`. When you create an object in Python information inside the\n",
    "parenthesis is passed onto the class constructor. Each constructor requires\n",
    "specific information, though some information can be omitted and will be given\n",
    "default values, as we will see. However, for a [steps.model.Model](API_1/API_model.rst#steps.API_1.model.Model) object, the\n",
    "constructor does not require any information at all:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": true,
    "jupyter": {
     "outputs_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "mdl = smodel.Model()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Species\n",
    "\n",
    "Our next task is to enumerate all the chemical species that can occur in the model.\n",
    "This means creating a number of objects of type [steps.model.Spec](API_1/API_model.rst#steps.API_1.model.Spec) and passing them\n",
    "on to the [steps.model.Model](API_1/API_model.rst#steps.API_1.model.Model) container. For our simple reaction the above equation,\n",
    "we create\n",
    "three [steps.model.Spec](API_1/API_model.rst#steps.API_1.model.Spec) objects (`molA`, `molB`, and `molC`) corresponding to our\n",
    "three chemical species:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": true,
    "jupyter": {
     "outputs_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "molA = smodel.Spec('molA', mdl)\n",
    "molB = smodel.Spec('molB', mdl)\n",
    "molC = smodel.Spec('molC', mdl)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The initializer of class [steps.model.Spec](API_1/API_model.rst#steps.API_1.model.Spec) requires two arguments: first an\n",
    "identifier string that can be used later on to refer to this object. This\n",
    "identifier string has to be unique among all species objects. It's important\n",
    "to distinguish between the Python variable we use to store the reference to\n",
    "the newly created object on the one hand (e.g. `molA`), and the identifier\n",
    "string on the other (e.g. 'molA'). In this example they bear the same name,\n",
    "but this is not necessary. These identifier strings are a common requirement\n",
    "for STEPS objects at this level and we will see when and how they are necessary\n",
    "later in this chapter, when describing geometry and performing simulations with\n",
    "our model.\n",
    "\n",
    "We should note at this point that our object reference variables should be\n",
    "named differently also, though Python will allow you to reuse the same name\n",
    "(one could even use the same name to reference objects of different type because\n",
    "a variable in Python does not have to reference a specific type, as is the case\n",
    "in c++ for example). So this, for example, does not result in an error in Python:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": true,
    "jupyter": {
     "outputs_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "spec = smodel.Spec('mol1', mdl)\n",
    "spec = smodel.Spec('mol2', mdl)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "and since the identifier strings are different this is not a STEPS error either.\n",
    "However, in the above code in the first line `spec` at first references the\n",
    "'molA' object, but in the second line the object `spec` references changes\n",
    "to the 'molB' object, and the reference to the 'molA' object is lost.\n",
    "These object references are required when defining the species' interactions,\n",
    "as we will see, so as a rule in STEPS all variables should be given a unique\n",
    "name so that no object references are lost. Actually, we could use container\n",
    "methods to return references to objects, but let's keep things simple for now.\n",
    "\n",
    "The second argument in the [steps.model.Spec](API_1/API_model.rst#steps.API_1.model.Spec) initializer is an object reference\n",
    "to the model we just created (stored in variable `mdl`). This will allow the [steps.model.Spec](API_1/API_model.rst#steps.API_1.model.Spec)\n",
    "initializer to add itself to the [steps.model.Model](API_1/API_model.rst#steps.API_1.model.Model) container.\n",
    "\n",
    "### Volume System\n",
    "\n",
    "Next, we will create a *volume system*:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": true,
    "jupyter": {
     "outputs_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "vsys = smodel.Volsys('vsys', mdl)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Volume systems (objects of class [steps.model.Volsys](API_1/API_model.rst#steps.API_1.model.Volsys)) are container\n",
    "objects that group a number of stoichiometric reaction rules\n",
    "(in later chapters we'll see how diffusion rules can also be added\n",
    "to these volume systems). The user has the option of grouping all\n",
    "reactions in the entire system into one single big volume system,\n",
    "or using multiple volume systems to organize reaction rules that\n",
    "belong together. The second option may be preferred for larger models,\n",
    "but for our simple example we only require one volume system.\n",
    "\n",
    "The arguments for the [steps.model.Volsys](API_1/API_model.rst#steps.API_1.model.Volsys) initializer are the same\n",
    "as for [steps.model.Spec](API_1/API_model.rst#steps.API_1.model.Spec):\n",
    "The first argument must be an identifier string, which can be used\n",
    "for future referencing. This identifier must be unique among all volume\n",
    "systems in the model. The second argument is the reference to the [steps.model.Model](API_1/API_model.rst#steps.API_1.model.Model)\n",
    "parent object of which this [steps.model.Volsys](API_1/API_model.rst#steps.API_1.model.Volsys) will be a child.\n",
    "\n",
    "### Reactions\n",
    "\n",
    "Finally, we need to create the reaction rules themselves.\n",
    "In STEPS a single reversible reaction has to be regarded as two separate\n",
    "reaction rules; the first rule corresponding to the _forward_ reaction and\n",
    "the second rule to the _backward_ reaction. So for our simple model in\n",
    "the above equation , we have to create two objects of class [steps.model.Reac](API_1/API_model.rst#steps.API_1.model.Reac)\n",
    "and add them to the [steps.model.Volsys](API_1/API_model.rst#steps.API_1.model.Volsys) object we just created:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": true,
    "jupyter": {
     "outputs_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "kreac_f = smodel.Reac('kreac_f', vsys, lhs=[molA, molB], rhs=[molC], kcst=0.3e6)\n",
    "kreac_b = smodel.Reac('kreac_b', vsys, lhs=[molC], rhs=[molA, molB])\n",
    "kreac_b.kcst = 0.7"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The initializer for [steps.model.Reac](API_1/API_model.rst#steps.API_1.model.Reac) can be provided with a bit more information than the\n",
    "initializers for the other objects until now. Aside from the required identifier string (which is checked\n",
    "to be unique among all reactions in all volume systems) and a required reference\n",
    "to the [steps.model.Volsys](API_1/API_model.rst#steps.API_1.model.Volsys) object to which this reaction will be added, we can also specify\n",
    "reaction stoichiometry at this stage (alternatively we can create the object with\n",
    "the minimum information and set the stoichiometry with object methods). This\n",
    "stoichiometry is specified by two Python lists:\n",
    "\n",
    "* A list called `lhs`, which gives the left-hand side of the stoichiometry\n",
    "  (i.e. the reactants). If a reactant occurs more than once, as can be the\n",
    "  case in e.g. a dimerization reaction, the [steps.model.Spec](API_1/API_model.rst#steps.API_1.model.Spec) object has to be listed the\n",
    "  required number of times.\n",
    "\n",
    "* A list called `rhs`, which gives the right hand side of the stoichiometry\n",
    "  (i.e. the reaction products). The same remarks that applied for parameter\n",
    "  `lhs` apply here.\n",
    "\n",
    "The lists must contain references to the required [steps.model.Spec](API_1/API_model.rst#steps.API_1.model.Spec) objects\n",
    "(and not identifier strings), so we can see why it was important\n",
    "not to lose these object references when we created our [steps.model.Spec](API_1/API_model.rst#steps.API_1.model.Spec) objects.\n",
    "Both lists can also be empty e.g. `lhs=[]` or `rhs=[]` (this is the default\n",
    "behavior if lists are not supplied to the constructor, but can be changed\n",
    "with object methods `setLHS` and `setRHS`). Care should be used in the case of\n",
    "empty lists because either situation could break physical laws such as the\n",
    "conservation of mass, although they are available because they can be useful\n",
    "for some simulation approximations. If the left hand side is empty, we have a\n",
    "zero order reaction that acts as a source, i.e. it creates molecules “out of\n",
    "thin air”. If the right hand side is empty, we have a sink reaction that\n",
    "merely destroys molecules. Obviously, within one single reaction rule,\n",
    "it doesn't make sense to set both `lhs` and `rhs` to an empty list.\n",
    "\n",
    "We can also already set the default rate constants for both the forward\n",
    "and backward reaction, by manipulating the `kcst` property of the Reac objects.\n",
    "As shown above these rate constants can be initialized as a parameter during\n",
    "object construction, or by using object methods after the object has been\n",
    "created, which is common to many properties of objects in STEPS. **Note**: *This is an example of an object property:* `kcst` *is a property of  our* `Reac` *object. In this example* `kreac_f.kcst = 0.3e6` *is an indirect call  to object method* `kreac_f.setKcst(0.3e6)`. *For more information on available  property functions see* [API References](API_1/API_ref.ipynb).\n",
    "\n",
    "\n",
    "These rate constants can also be changed later on during the simulation, but values\n",
    "given here will be used as default values when a simulation state is initialized.\n",
    "*Generally speaking, physical constants in STEPS must be specified in SI units*.\n",
    "However, the s.i derived unit for volume is the cubic meter, which means that the s.i derived unit for concentration is mole per cubic meter, and reaction constants would be based on cubic meters, i.e. a second order reaction constant should have units of metres cubed per mole-second ($m^{3}\\left(mol.s\\right)^{-1}$). However, the convention in chemical kinetics is to base reaction parameters on Molar units (M = mol/litre) (i.e. based on the litre rather than the cubic metre) and this convention is followed in STEPS. The actual interpretation of the unit of a reaction rule depends on the order of that reaction.\n",
    "\n",
    "\n",
    "In other words, it depends on the number of species in the left hand side. **The constant for a zero order reaction in STEPS** **has units** $M.s^{-1}$; **for a first order reaction rule has units** $s^{-1}$; **for a second order reaction the units are** $\\left(M.s\\right)^{-1}$; **for a third order reaction** $\\left(M^{2}.s\\right)^{-1}$; and so on (while there is no upper limit on the order of the reaction when working with Reac objects within\n",
    "the context of package steps.model, STEPS simulators will not deal with any\n",
    "reaction rule that has an order larger than 4). These units are not strictly s.i. units, however **all parameters, other than reactions constants, in STEPS must be given in base or derived s.i. units**, which includes the unit of $m^{3}$ for volume. **Note**: *The units for a zero-order reaction have changed from previous versions of STEPS (*$s^{-1}$*)\n",
    "   so as to follow convention. Zero-order reactions are NOT permitted on membranes (surface\n",
    "   reactions, see later chapters) due to the ambiguity of the interpretation of the units.*\n",
    "\n",
    "Finally, the full Python code of our model description looks like this:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": true,
    "jupyter": {
     "outputs_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "import steps.model as smodel\n",
    "mdl = smodel.Model()\n",
    "molA = smodel.Spec('molA', mdl)\n",
    "molB = smodel.Spec('molB', mdl)\n",
    "molC = smodel.Spec('molC', mdl)\n",
    "volsys = smodel.Volsys('vsys', mdl)\n",
    "kreac_f = smodel.Reac('kreac_f', volsys, lhs=[molA, molB], rhs=[molC], kcst = 0.3e6)\n",
    "kreac_b = smodel.Reac('kreac_b', volsys, lhs=[molC], rhs=[molA, molB])\n",
    "kreac_b.kcst = 0.7"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Notice that we have said nothing about the actual geometry of our model at\n",
    "this point, nor have we said anything related to the simulation itself\n",
    "(initial conditions, special events during the simulation, etc).\n",
    "We have just created a hierarchy of Python objects that describes\n",
    "the interactions between chemical species and we have done this on a\n",
    "rather abstract level.\n",
    "\n",
    "## Preparing geometry for well-mixed simulation\n",
    "\n",
    "Before we can start doing simulations, we need to say something about\n",
    "the environment in which our reactions will occur. Specifically, we need\n",
    "to describe the volume compartments in which reactions take place, and sometimes\n",
    "also the surface patches around or in between these compartments (patches are described in more detail in the [next chapter](ip3.ipynb)). We then link\n",
    "each of these compartments with one or more of the volume systems defined\n",
    "in the kinetic model, in a process called annotation. There are currently\n",
    "two types of geometry that can be specified in STEPS:\n",
    "\n",
    "1. *Well-mixed geometry*. In this type of geometry description, compartments are described\n",
    "   only by their volume in cubic meters and patches by their area in\n",
    "   square meters and connectivity to compartments. Nothing is said\n",
    "   about the actual shape.\n",
    "\n",
    "2. *Tetrahedral mesh geometry*. In this type of geometry, a compartment is a collection of 3D tetrahedral\n",
    "   voxels and a patch is a 2D section between compartments composed of\n",
    "   triangular surface connecting tetrahedrons.\n",
    "\n",
    "We will talk about tetrahedral meshes (and their relationship with\n",
    "well-mixed geometry) in the chapter on [Simulating Diffusion in Volumes](diffusion.ipynb).\n",
    "In this chapter, however, we will restrict ourselves to well-mixed geometry,\n",
    "because we will only use the well-mixed stochastic solver. Specifying a\n",
    "well-mixed compartment that can be used together with the kinetic model\n",
    "from the previous section is very easy. First, need we to import the STEPS\n",
    "module that contains the objects used to define the geometry, namely [steps.geom](API_1/API_geom.rst):\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": true,
    "jupyter": {
     "outputs_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "import steps.geom as swm"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Like before we give the [steps.geom](API_1/API_geom.rst) module an alias `swm`, simply to reduce later\n",
    "typing. Next we generate a parent container object, that will collect and store\n",
    "the actual compartments. The purpose of this object is in many ways similar to\n",
    "the purpose of the [steps.model.Model](API_1/API_model.rst#steps.API_1.model.Model) object we discussed in the previous section,\n",
    "and the constructor does not require any information:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": true,
    "jupyter": {
     "outputs_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "wmgeom = swm.Geom()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Finally, the actual compartment we need for simulating our model must be created:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": true,
    "jupyter": {
     "outputs_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "comp = swm.Comp('comp', wmgeom)\n",
    "comp.addVolsys('vsys')\n",
    "comp.setVol(1.6667e-21)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Since our model is very simple, we only create one compartment, an object of\n",
    "type [steps.geom.Comp](API_1/API_geom.rst#steps.API_1.geom.Comp), and we store it in the variable called `comp`.\n",
    "The initializer takes two arguments here: first a unique identifier string\n",
    "(that will once again be used later on, during actual simulation) and a\n",
    "reference to the container object. Since we only have one compartment,\n",
    "we use the rather unimaginative identifier `comp`.\n",
    "\n",
    "The second line corresponds to the annotation, which in this case is very simple.\n",
    "It links the compartment we just created with a volume system that carries the\n",
    "identifier 'vsys'. At this stage, only the string is stored in the Comp object.\n",
    "In other words, STEPS makes no attempt to resolve the link by searching for a\n",
    "[steps.model.Volsys](API_1/API_model.rst#steps.API_1.model.Volsys) object that has the identifier 'vsys'. In fact, STEPS\n",
    "couldn't resolve the link at this point, because the kinetic model and the\n",
    "geometric model remain completely separated in memory. They will remain\n",
    "separated until the time we create an actual simulation; that is the point\n",
    "where these cross references between kinetic model and geometry will be resolved.\n",
    "\n",
    "This “workflow” enables us to build several kinetic model descriptions and geometry\n",
    "descriptions separately, and put them together as needed for simulation. The only\n",
    "requirement for any combination of kinetic model and geometry to work is that\n",
    "**the volume systems referenced from the geometry have been defined in the\n",
    "kinetic model**. An error will result when creating the simulation object\n",
    "(which we will do next) if any compartment contains a reference to a volume\n",
    "system that is unknown in the model description.\n",
    "\n",
    "The third line sets the volume of the compartment. Once again, SI units must be\n",
    "used, meaning that the volume is specified in $m^{\\text{3}}$. The volume of\n",
    "compartment 'comp' therefore has a volume of $1.6667\\cdot10^{-3}\\mu m^{3}$.\n",
    "This parameter can be set in the [steps.geom.Comp](API_1/API_geom.rst#steps.API_1.geom.Comp) object initializer, explicitly with the\n",
    "`setVol` method (as above), or with the property function `vol` (i.e.\n",
    "`comp.vol = 1.667e-21`).\n",
    "\n",
    "## Simulation with `Wmdirect`\n",
    "\n",
    "With all this in place, we can finally start performing simulations.\n",
    "Since STEPS is a set of Python packages and extensions, simulations\n",
    "can either be fully scripted and run automatically, or they can be\n",
    "controlled interactively from the Python prompt. In this text, we'll\n",
    "just run a simulation “automatically” from begin to end, without any\n",
    "interactive input.\n",
    "\n",
    "The simulator (or *solver*) we'll be using here is the `Wmdirect` solver.\n",
    "`Wmdirect` is\n",
    "an implementation of Gillespie's Direct Method (see Gillespie, *Exact stochastic simulation of coupled chemical reactions*, J Phys Chem 1977, 81:2340-2361) for stochastic simulation and\n",
    "has the following properties:\n",
    "\n",
    "* It's a *well-mixed* solver, meaning that you will need to present\n",
    "  it with well-mixed geometry.  **Note**: *if you present a well-mixed solver in STEPS with a tetrahedral\n",
    "   mesh, the solver will automatically extract the well-mixed properties\n",
    "   (i.e. the volumes of compartments, the areas of patches and their connectivity)\n",
    "   from the mesh.*    Well-mixed solvers have no\n",
    "  concept of concentration gradients within a given compartment, but rather\n",
    "  assume that all molecules in any given compartment are kept uniformly\n",
    "  distributed by elastic (non-reactive) collisions between reaction events.\n",
    "  Therefore there is also no concept of diffusion within a compartment.\n",
    "  However, we will later see that even in simulations with well-mixed solvers,\n",
    "  it is possible to implement diffusive fluxes in between compartments,\n",
    "  by linking them with patches.\n",
    "\n",
    "\n",
    "* It's a *stochastic* solver, meaning that it uses random numbers to create\n",
    "  possible “realizations” (also called “iterations”) of the stochastic\n",
    "  interpretation of the reaction system. In other words, for the same set\n",
    "  of initial conditions, running the simulation multiple times (with different\n",
    "  initial seed values for the random number generator) will generate different\n",
    "  results each time.\n",
    "\n",
    "\n",
    "* It's a *discrete* stochastic solver, meaning that the amount of mass in the\n",
    "  system is (at least internally) not being tracked over time as continuous\n",
    "  concentrations, but as integer molecular counts. This may be a negligible\n",
    "  distinction with large numbers of molecules present in the system, but it\n",
    "  becomes very important when any species involved in the system has a small\n",
    "  population of only a few molecules (especially when these particular molecules\n",
    "  are involved in some feedback mechanism). Consequently, each realization is a\n",
    "  sequence of discrete, singular reaction events.\n",
    "\n",
    "\n",
    "* It's an *exact* stochastic solver, which means that each iteration is exact\n",
    "  with respect to the master equation governing the reaction system.\n",
    "\n",
    "To perform a simulation of the above kinetic model and geometry with `Wmdirect`,\n",
    "we first need to create a random number generator. This must be done explicitly by\n",
    "the user, because this allows you to choose which random number generator to use\n",
    "(even though that choice is rather limited right now) and, more importantly, how\n",
    "to use it. Random number generation objects can be found in package [steps.rng](API_1/API_rng.rst):\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": true,
    "jupyter": {
     "outputs_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "import steps.rng as srng\n",
    "r = srng.create('mt19937', 256)\n",
    "r.initialize(23412)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In the first line, we import the [steps.rng](API_1/API_rng.rst) package with alias `srng`.\n",
    "In the next line, we actually generate a random number generator using the\n",
    "function [steps.rng.create](API_1/API_rng.rst#steps.API_1.rng.create). The first argument selects which type of random\n",
    "number generator we want. STEPS currently only implements one pseudo RNG\n",
    "algorithm, 'mt19937', also known as the “Mersenne Twister”. The Mersenne\n",
    "Twister is supported because it is considered to be quite simply the current\n",
    "best choice for numerical simulations, because of its large period and fast\n",
    "runtime. The second argument selects how many random numbers are pre-generated\n",
    "and stored in a buffer.\n",
    "\n",
    "In the third line, we initialize the random number generator with a seed value.\n",
    "Here, we initialize the random number generator only once. You can, however,\n",
    "also re-initialize it prior to each iteration, for instance to ensure a\n",
    "simulation starts with some specific seed value. **Note**: *Solver* `Wmdirect` *guarantees that a stochastic simulation started with the\n",
    "   same seed value will recreate the exact same chain of events. The same is true\n",
    "   for solver* `Tetexact`. *This might not be the case in future solvers, particularly\n",
    "   in solvers that have been parallellized using some form of “look-ahead” execution.*\n",
    "\n",
    "\n",
    "Next we will create the actual solver object. Since we will be doing\n",
    "simulations using solver `Wmdirect`, we first import the package in which all\n",
    "solvers have been implemented, then create the [steps.solver.Wmdirect](API_1/API_solver.rst#steps.API_1.solver.Wmdirect) object:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": true,
    "jupyter": {
     "outputs_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "import steps.solver as ssolver\n",
    "sim = ssolver.Wmdirect(mdl, wmgeom, r)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For all [steps.solver](API_1/API_solver.rst) objects (currently `Wmdirect`, `Wmrk4` and `Tetexact`)\n",
    "the initializer requires three arguments. The first argument is the model\n",
    "description (a variable that references the [steps.model.Model](API_1/API_model.rst#steps.API_1.model.Model) object we\n",
    "created in the first section of this chapter), followed by the the\n",
    "well-mixed geometry description (a variable that references a [steps.geom.Geom](API_1/API_geom.rst#steps.API_1.geom.Geom)\n",
    "object) and finally also a variable that references the random number generator\n",
    "we just constructed. And that's it.\n",
    "\n",
    "The variable `sim` now references the solver object we just created which contains\n",
    "all the methods we require to run and control our simulation, so now we can\n",
    "start performing simulations. First we call the reset function on the solver object:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": true,
    "jupyter": {
     "outputs_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "sim.reset()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This method sets all values within the solver “state” to their default values.\n",
    "This state includes the concentration of species in all compartments (set to 0\n",
    "everywhere), rate constants (set to their defaults from the [steps.model.Reac](API_1/API_model.rst#steps.API_1.model.Reac) objects)\n",
    "etc. If you want to re-initialize the random number generator prior to each\n",
    "individual iteration, setting the seed value right before calling the reset\n",
    "function would be a good choice. **Note**: *Since reset currently doesn't use any random numbers, in principle you\n",
    "   might also initialize the random number generator's seed value right after\n",
    "   calling it. This might change with future solvers, so as a rule you're better\n",
    "   off if you make it a habit to initialize the random number generator before\n",
    "   calling reset.*\n",
    "\n",
    "After the `reset` function call, we can start manipulating the “state” of the\n",
    "simulation, i.e. setting up the initial conditions of the simulation.\n",
    "Each solver implemented in STEPS includes a numbers of functions for doing that.\n",
    "Each solver, including the [steps.solver.Wmdirect](API_1/API_solver.rst#steps.API_1.solver.Wmdirect) solver that we're using here, implements a\n",
    "basic set of functions that allows you e.g. to get/set concentration of species\n",
    "in compartments and patches as a whole. In addition, solvers will typically\n",
    "implement additional functions that only make sense for their specific\n",
    "implementation. Due to the internal structure of the code, all solver methods\n",
    "are available for all solvers, but methods which don't make sense for a particular\n",
    "solver (e.g. getting/setting concentration in individual tetrahedrons doesn't\n",
    "make sense for a well-mixed solver) will display an error message if called. A detailed list of which methods\n",
    "are available for which solvers is available in [API_1/API_solver](API_1/API_solver.ipynb).\n",
    "\n",
    "Now let's set up our initial conditions with simulation object methods:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": true,
    "jupyter": {
     "outputs_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "sim.setCompConc('comp', 'molA', 31.4e-6)\n",
    "sim.setCompConc('comp', 'molB', 22.3e-6)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This means we're setting the concentration of molA to $31.4 \\mu M$ and the\n",
    "concentration of molB to $22.3 \\mu M$ in our compartment comp.\n",
    "We're setting these concentration values at simulation time $t = 0$,\n",
    "but these functions can be called at any point in time, to control the\n",
    "concentration of species during simulation. Here we see an example of why\n",
    "the identifier strings were necessary during our model specification.\n",
    "The simulation methods require the identifier strings to the [steps.model](API_1/API_model.rst) and\n",
    "[steps.geom](API_1/API_geom.rst) objects and not a variable that references the objects.\n",
    "This is necessary because the model and geometry specification are separated\n",
    "from the simulation and could be organised inside functions or even separate\n",
    "modules meaning a reference to the object will often not be available.\n",
    "\n",
    "Next we'll use NumPy to generate some auxiliary numerical arrays that will be\n",
    "used during simulation. **Note**: *Presently, all structures for storing simulation results are explicitly\n",
    "   created by the user and it is also up to the user to include in their script,\n",
    "   typically, a for loop that will run the simulation, collect data and store this\n",
    "   data in an appropriate structure, such as a list or NumPy array. In the future\n",
    "   we may implement the option to pass to the simulation object information about\n",
    "   what data to store, which will then be collected internally and returned to the\n",
    "   user or saved automatically in files. This will make it much simpler to run a\n",
    "   simulation and improve runtime, for the cost of a slightly lengthier\n",
    "   initialization process.*"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "collapsed": true,
    "jupyter": {
     "outputs_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "import numpy\n",
    "tpnt = numpy.arange(0.0, 2.001, 0.001)\n",
    "res = numpy.zeros([2001, 3])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The first array, `tpnt`, contains the time points at which we will pause the\n",
    "simulation. This range of numbers starts at 0.0 and runs to 2.0 seconds with\n",
    "$1ms$ intervals. That gives us a total of 2001 “time points”.\n",
    "The second array, `res`, will be used to store the concentrations of 'molA',\n",
    "'molB' and 'molC' over time: that's why the array has 2001 rows and 3 columns.\n",
    "We use NumPy's zeros function, which not only allocates the array but also\n",
    "initializes all elements to zero.\n",
    "\n",
    "Now it's time to actually run an iteration:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": true,
    "jupyter": {
     "outputs_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "for t in range(0,2001):\n",
    "    sim.run(tpnt[t])\n",
    "    res[t,0] = sim.getCompCount('comp', 'molA')\n",
    "    res[t,1] = sim.getCompCount('comp', 'molB')\n",
    "    res[t,2] = sim.getCompCount('comp', 'molC')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We loop over all time points using a `range` to generate indices.\n",
    "Then we use the basic solver function run to forward the simulation\n",
    "until the time specified by the function's argument. Note that the first time the loop is executed, the current time is `0.0` because we called the `reset()` function earlier, so in this case, `sim.run(0.0)` doesn't move the simulation forward.\n",
    "\n",
    "After having forwarded the simulation one millisecond, we use function\n",
    "[steps.solver.Wmdirect.getCompCount](API_1/API_solver.rst#steps.API_1.solver.Wmdirect.getCompCount) to sample the number of molecules present in compartment\n",
    "comp for each of our three species. All of these functions are described\n",
    "in more detail in [API_1/API_solver](API_1/API_solver.ipynb).\n",
    "\n",
    "Finally, we can plot these values using Matplotlib. Due to the low numbersof molecules, we can clearly see the reactions occurring as discrete events.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAGtCAYAAADQwSggAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmYG9WVNvD3VpVK6r3tttt7e8MLGLwDZnfMTiDshIRA\nyBBgyEJWAskMgQyTASYBMiQhgXyQECBA4gBmD4ttFrPaxtjG2NgGG7d3u233rpKq7veHVGp1t9St\npUoqSe/vefy4VSpVXalb0tHVuecIKSWIiIiIiCh1Sr4HQERERERUaBhEExERERGliUE0EREREVGa\nGEQTEREREaWJQTQRERERUZoYRBMRERERpYlBNBERERFRmhhEExERERGliUE0EREREVGatHwPIBWD\nBg2SY8aMyfcwiIiIiKjILVu2bI+UcnB/+xVEED1mzBgsXbo038MgIiIioiInhNicyn5M5yAiIiIi\nShODaCIiIiKiNDGIJiIiIiJKU0HkRBMRERFRYQiFQmhsbERnZ2e+h9KnQCCAkSNHwufzZXR7BtFE\nRERE5JjGxkZUVVVhzJgxEELkezgJSSmxd+9eNDY2YuzYsRkdg+kcREREROSYzs5O1NXVeTaABgAh\nBOrq6rKaLWcQTURERESO8nIAbct2jAyiiYiIiIjSxCCaiIiIiIrOU089BSEE1q5d68rxGUQTERER\nUdF59NFHceyxx+LRRx915fgMoomIiIioqLS2tuLNN9/E/fffj8cee8yVc7DEHRERERG54hfPfIQ1\n25odPeYhw6tx01lT+txnwYIFOO200zBx4kTU1dVh2bJlmDVrlqPj4Ew0ERERERWVRx99FBdffDEA\n4OKLL3YlpYMz0URERETkiv5mjN3Q1NSEhQsXYtWqVRBCwDRNCCHwq1/9ytHSe5yJTuJARwjrdrRg\n3Y4WfLKzBWHTyveQiIiIiKgf8+fPx6WXXorNmzdj06ZN2LJlC8aOHYs33njD0fMwiE7i1Y934tTf\nvI5Tf/M6Trnrddy9cEO+h0RERERE/Xj00Udx7rnndtt2/vnnO57SwXSOJI4YOxD3XDITAHDDP1di\nd0swzyMiIiIiov4sWrSo17Zrr73W8fMwiE5i5IByjBxQDgD45XMfwwgznYOIiIiIIpjOkQK/psBg\nTjQRERERRTGIToGuKTDCZr6HQUREREQewSA6BbqmIMh0DiIiIiKKYhCdAl1VmBNNRERERDEMolMQ\nSedgEE1EREREEQyiU6BzYSERERFRwVBVFdOnT8e0adMwc+ZMvPXWW46fgyXuUqCrCoIhBtFERERE\nhaCsrAwrVqwAAPzrX//CT3/6U7z22muOnoMz0Snw+1Q0tRt4Ynkjnl+1HSHOShMREREVhObmZgwY\nMMDx43ImOgVDq/3Y3RLED//+IQDgz984HF+YVJ/nURERERF53As3ADtWOXvMoYcBp9/W5y4dHR2Y\nPn06Ojs7sX37dixcuNDZMYBBdEpuOP1gfG3OaGze247LHngPrZ3hfA+JiIiIiJKIT+d4++23cdll\nl2H16tUQQjh2DgbRKVAVgdF1FRCIPPCs1EFERESUgn5mjHPhqKOOwp49e7B7927U1zuXScCc6DTo\nWuThYqUOIiIiosKwdu1amKaJuro6R4/Lmeg02EF0MMQW4EREREReZedEA4CUEg8++CBUVXX0HAyi\n08CZaCIiIiLvM033JzyZzpEGXY0G0cyJJiIiIippDKLT4FMFhGAQTURERFTqXAuihRABIcR7QogP\nhRAfCSF+Ed0+VgjxrhBigxDicSGE7tYYnCaEiHQvZBBNREREVNLcnIkOApgnpZwGYDqA04QQcwDc\nDuAuKeVBAPYBuMLFMThO1xhEExEREZU614JoGdEaveiL/pMA5gGYH93+IIBz3BqDG3yqgsXrduV7\nGERERESUR67mRAshVCHECgC7ALwMYCOA/VJKu+VfI4ARSW57lRBiqRBi6e7du90cZlrajTB2twTz\nPQwiIiIiyiNXg2gppSmlnA5gJIAjAExO47b3SSlnSylnDx482LUxputrR46GzPcgiIiIiCipHTt2\n4OKLL8b48eMxa9YsnHHGGfjkk08cPUdOqnNIKfcDWATgKAC1Qgi7PvVIAFtzMQan+H3MiSYiIiLy\nKiklzj33XMydOxcbN27EsmXLcOutt2Lnzp2Onse1ZitCiMEAQlLK/UKIMgAnI7KocBGACwA8BuDr\nABa4NQY36KoK05IwLQlVEfkeDhERERHFWbRoEXw+H/793/89tm3atGmOn8fNjoXDADwohFARmfH+\nu5TyWSHEGgCPCSH+G8AHAO53cQyOi3UtDFso051tH0lERERUTG5/73asbVrr6DEnD5yM64+4Pun1\nq1evxqxZsxw9ZyKuBdFSypUAZiTY/iki+dEFiUE0EREREbk5E12U7CA6GDYRqdpHRERERIn0NWPs\nlilTpmD+/Pn975gltv1Okz8WRHNxIREREZHXzJs3D8FgEPfdd19s28qVK/HGG284eh4G0Wmyg2jD\nZBBNRERE5DVCCDz55JN45ZVXMH78eEyZMgU//elPMXToUEfPw3SONOlqV040EREREXnP8OHD8fe/\n/93Vc3AmOk12TvR3/rY8mhdNRERERKWGQXSaDhtZA0UAG3e3oXFfR76HQ0RERER5wCA6TfVVAfz+\nqzMBMKWDiIiIKBEpZb6H0K9sx8ggOgPxtaKJiIiIqEsgEMDevXs9HUhLKbF3714EAoGMj8GFhRnQ\nWaGDiIiIKKGRI0eisbERu3fvzvdQ+hQIBDBy5MiMb88gOgOs0EFERESUmM/nw9ixY/M9DNcxnSMD\nfl+k3TercxARERGVJgbRGeBMNBEREVFpYxCdAZ2tv4mIiIhKGoPoDPhZnYOIiIiopDGIzgBnoomI\niIhKG4PoDAS0yMLC+csa8zwSIiIiIsoHBtEZqCn3AQA0ReR5JERERESUDwyiMzR30mA2WyEiIiIq\nUQyiM6SrChcWEhEREZUoBtEZ8vtUBtFEREREJYpBdIZ0VWF1DiIiIqISxSA6Q7rGIJqIiIioVDGI\nzpBfU2CEzXwPg4iIiIjygEF0hnRNYXUOIiIiohLFIDpDkZloBtFEREREpUjL9wAKla4qsCSweW8b\n1LimK3UVfpTpah5HRkRERERuYxCdocpA5KE74VeLu22fUF+Jl394Qh5GRERERES5wiA6QxfMGoma\nMh/CloxtW7BiK1Zvbc7jqIiIiIgoFxhEZ6gq4MN5M0d227Z2ews+3HIgTyMiIiIiolzhwkIHaaqA\nGTczTURERETFiUG0g1SFQTQRERFRKWAQ7SBVCJiSQTQRERFRsWMQ7SB7JloykCYiIiIqagyiHWTX\ni2ZKBxEREVFxYxDtoFgQzZloIiIioqLGINpBnIkmIiIiKg0Moh2kRYPoMINoIiIioqLGINpB9ky0\nxSCaiIiIqKgxiHaQyploIiIiopLAINpBzIkmIiIiKg0Moh2kCgbRRERERKWAQbSDOBNNREREVBoY\nRDtIUxlEExEREZUCBtEOUgQXFhIRERGVAgbRDtKUyMPJmWgiIiKi4uZaEC2EGCWEWCSEWCOE+EgI\n8b3o9puFEFuFECui/85wawy5pkYfTQbRRERERMVNc/HYYQA/klIuF0JUAVgmhHg5et1dUspfu3ju\nvFA5E01ERERUElwLoqWU2wFsj/7cIoT4GMAIt87nBXbb74ff2YwhNQEIAOfMGIGxgyryOzAiIiIi\ncpSbM9ExQogxAGYAeBfAMQC+I4S4DMBSRGar9yW4zVUArgKAhoaGXAwza6MGlqFcV/H40i2xbQc6\nQrj5S1PyOCoiIiIicpqQ0t3UAyFEJYDXAPxSSvmEEGIIgD0AJIBbAAyTUv5bX8eYPXu2XLp0qavj\ndMOR//MKvjCpHredPzXfQyEiIiKiFAghlkkpZ/e3n6vVOYQQPgD/BPCIlPIJAJBS7pRSmlJKC8Cf\nABzh5hjySdcUGGEr38MgIiIiIoe5WZ1DALgfwMdSyjvjtg+L2+1cAKvdGkO+6aqCIINoIiIioqLj\nZk70MQAuBbBKCLEiuu1nAL4ihJiOSDrHJgBXuziGvNI1lUE0ERERURFyszrHmwBEgqued+ucXqNr\nCgyTQTQRERFRsWHHQhf5VQVG2Mz3MIiIiIjIYQyiXeT3MSeaiIiIqBgxiHaRrrI6BxEREVExYhDt\nIpa4IyIiIipOOelYWKp0TUHjvg5888FIo5ivHz0ax00YnOdREREREVG2GES7aN7keqzf2Ypt+zuw\nflcLqss0BtFERERERYBBtIvOnj4CZ08fAQCY9+vFTO0gIiIiKhLMic4RXWOlDiIiIqJiwSA6R/xc\nZEhERERUNBhE5wgrdRAREREVDwbROcIW4ERERETFg0F0jrDxChEREVHxYBCdI35NZRBNREREVCQY\nROcI0zmIiIiIigeD6BzRNQXBkJnvYRARERGRA9hsJZk1C4AXfxb5WQjgxJuAqRdmfDi/pmBHcyeO\nvvXVbtvrqwN4/Oo58GtqNqMlIqI0Pbb2Mdy/+v6Mb3/WuLNw7cxrHRwRERUSBtHJVA4Fxs2N/Lx6\nPvD5W1kF0RfNHoWQaUHKrm2f7WnD0s37sLfVwPDasqyGS0RE6Xlvx3toC7XhxIYT077tW9vewjvb\n38G1YBBNVKoYRCfTcGTkHwB8uggIG1kdbtqoWkwbVdtt2xPLG7F08z4uOCQiygPDNDCyciRuOeaW\ntG/73YXfxfbW7S6MiogKBXOiU6H5ATPo+GF1LfLwc8EhEVHuGaYBn+rL6La6osOwsptcIaLCxiA6\nFaofCLsQRKvRIJoz0UREOWdYBnRFz+i2uqrDMBlEE5UyBtGp0HR3gujoTHQwzKodRES5ZpgGdJVB\nNBFlhkF0KlR30zmCnIkmIso5w8x8Jtqn+JjOQVTiGESnQvNnvbAwEbusHdM5iIhyz7Ayn4n2q37O\nRBOVOAbRqVB1V2ai/RpzoomI8iXbdI6QGXJ4RERUSBhEp0JzaWEh0zmIiPImqyBa0RGWYZgW17QQ\nlSrWiU6F5gdC7UB7U2RW2l/pyGHt6hz7O0LY3971tWC5rsUCbCIi6q7ZaIaM71yVoaAZhE/JrMSd\nXRpvT8ceDCwbmPFxiKhwMYhOhV4BNH0K/O9YQCjAFa8AI2dlfdhyfyQn+sanVuPGp1bHto8dVIFF\nP56b9fGJiIrN42sfx3+/+9+OHa/cV57Z7bTI7U6afxKmDpqKR774iGNjIqLCwCA6FcdfBww5DGjd\nCbx5J3Dgc0eC6PqqAH7/1ZnY1dIZ27Zw7S4s2bAn62MTERWjLS1b4FN8+NHsH2V9LAGBk0aflNFt\nzxx/JlSh4vnPnsdnBz7LeixEVHgYRKdiwBhgzr8DezdGgmgHK3V8ceqwbpdbOsN4Y/0ehE0LmsqU\nDiKieIZloEwrwyUHX5LXcVTr1fjy5C9jc8tmrNu3Lq9jIaL8YJSWDs0f+d+FSh02tgInIkoum8WA\nbtAVNl0hKlUMotOhRoNoFyp12NgKnIgouZAVyrhBiht0VUfICsGSfM0mKjUMotOhRV+4XQyi/T6W\nvSMiSiZoBr01Ex0dS8hizWiiUsMgOh1qDtI5OBNNRJSU19I57NJ2TOkgKj0MotNhv3C70ALcxgYs\nRETJGZbhuXQOgEE0USliEJ0ORXGtBbiNrcCJiJILmSFPzUT7o99QMogmKj0MotOlutMC3ObXIg1Y\nWJ2DiKg3z6ZzWAyiiUoN60SnS9Ui9aJdYqdzLNu8D8NrA6ivCrh2LiKiTOxo24FNzZvycu79wf1o\n8Dfk5dyJ2AH9sp3LsL1tOwCgQqtA0AwiLMMAgPE14zG4fHDexkiUb0EziH2d+zCobBBW7l4JwzIw\npW4KqvSqfA8tKwyi0xXqBDa84trhB5RHXpBveXYNXl6zA49ddZRr5yIiysQ1r1yDDfs35O38UwdP\nzdu5exrgHwAAuOmtm5LuM6N+Bv56+l9zNSQiz/nxaz/G4i2L8esTfo0fv/ZjAMD5E87HzUffnN+B\nZYlBdLomnQ6se8G1wx88rArPX3scbn76I+xvZ8kkIvKeA8EDmDtyLi4/9PK8nH/SgEl5OW8ihw89\nHI+d+Rg6w50AgOU7l+PuD+4GANx78r24f9X92NOxJ59DJMq7xVsWA0DsuVClV6HZaM7jiJzBIDpd\ntQ2AFXbt8EIIHDK8GvXVfuxpdS/3mogoU0EziGGVwzBryKx8DyXvhBCYUjcldrkt1Bb7+YihR+CZ\njc9ga+vWfAyNyHNajVYAQI1eg6CLRRpyhQsL06UFACsEWO4u/NM1hWXuiMiTvNY10EviFz1qihbp\naGjyW0UioOtDZqVeWRQVbRhEp8vuWujyL9+vKazQQUSe5LUKGV7S88OFT/GxcgdRVGsoMhNdrpUz\niC5JOehaCERK3bFWNBF5TdgKw5Qmg+gk7LrR8ZeLIVggckKr0QpNaCjzlSFkFf43NAyi06VFXyBd\n7FoIRNI5GEQTkdfYASGD6MR8qq/bZV3VGUQTRbWEWuBTfdAVnTnRJSkWRHe6ehpdVRAMm66eg4go\nXfbsEXOiE+v5uOiKjrAMw5KcFCFqC7VBV/Wi+XDpWhAthBglhFgkhFgjhPhICPG96PaBQoiXhRDr\no/8PcGsMroilc7g/E21JIMy8aCLyEM5E963n42LPTBdDwECUrdZQK3RFh67oTOfoRxjAj6SUhwCY\nA+DbQohDANwA4FUp5QQAr0YvFw57YaGLrb+Brs6FXFxIRF5iL5Kz211Tdz2DaHtmmosLiSI50cU0\nE+1anWgp5XYA26M/twghPgYwAsDZAOZGd3sQwGIA17s1DsfZM9HLHwROuw0QwpXT6GokiN7baqB8\nIMt5E1FiUko8teGpWOMCn+LD2QedjQpfRWyf1xtfx2cHPut2u7qyOsyqn4WXNr+U1vmaOpsAcCY6\nmZ4fLuzH6eE1D3f7nWRiSMUQnDbmtIxvv2HfBizZtqTf/cbXjsexI47N+DxEyezr3IehFUPhU3xo\nDbXiwY8eTLpvpa8S5088P4ejS19OojMhxBgAMwC8C2BINMAGgB0AhiS5zVUArgKAhoYG9weZqtro\nWN79IzDnGmDAGFdOU1cZeeFd/MluXDpntCvnIKLCt3H/Rvz8rZ9321alV+Gs8WfFLl/32nVoD7f3\nuu1pY07Di5teTPucqlAxonJE+oMtAeW+clT5qnDEsCMAAA1VDVCEgj98+AdHjn/UsKNQ46/J6La/\nW/E7vPr5q/3uV6VX4a2vvJXROYgSqdKr0GK0oNPsxJjqMRhTMwYd4Q78eumvk95mZOVIBtFCiEoA\n/wTwfSlls4ibuZVSSiGETHQ7KeV9AO4DgNmzZyfcJy+GHgqcey/w5NWA0ftNySknTBwMAAixQgcR\n9cEOju844Q5MGjgJZz55JjrCHbHrpZRoD7fjG4d+A1dPvRoA8MJnL+AXb/8CTZ1NqAvU4bnznkvr\nnKpQEdACzt2JIuJTfHjt4tegicjb69EjjsY7X30n64WFT214Cre9dxs6w50ZB9HtoXYcWnco/t+p\n/y/pPvesuAd/W/u3TIdJlFBdoA5HDD0Cvzz2lyjTyqAIBecedC4kkod3Au580+8kV4NoIYQPkQD6\nESnlE9HNO4UQw6SU24UQwwDscnMMrvBXR/53sTwLc6KJKBV2XmG1vxq1/tpu24BIXWcg8tWonU5Q\npVcBiCzyCWiBrNMMqLueKR1lWlnWx6z0VQLILrfasIx+f98VvgqErUg1EUWwgBc5wzANVPgquv3t\nlfvK8zgiZ7hZnUMAuB/Ax1LKO+OuehrA16M/fx3AArfG4JrY4kL3kuLtnGjWiiaivthBla7oseAt\nPtCKv95m/9wWauMCwQJhN3HJpoV4yAz1agbTk53DXQyVE8g7gmawKNdRuPkx8xgAlwKYJ4RYEf13\nBoDbAJwshFgP4KTo5cKSg66FmqpAEQyiiahvdlBlr3gHus9E2z/HNwGx92sxWoryja0YxUrlZTkT\n3bMZTE+xaiJFUDmBvMOwjKKsLe9mdY43gaQJLSe6dd6ciDVccb/MHRuuEFFf4kvOaYoGRSgJg+j4\nYNn+udVoxfCK4TkcLWXKDkCy6fIWNIP9BjL230bQDKIKVRmfiyheyAwV5Qd2JjxlIkdBtF9TORNN\nRH2yg2T7a3q/6u/2VbwdZMd/jR+bsbaMonxjK0aJvmVIl2H2//uOpXNkkTZC1FOxvtYwiM5EDtI5\ngMhMNBcWElFfes40+xRft9nK2PUJcqLjb0fe5kRwm8psYKK8eqJs2AtVizGdg0F0JnKwsBCILC4M\nciaaiPrQM4ju2Qmsr5zonj+TdznR+dCwjH4Xkjox400UL1FKWbFgEJ2JHM1E+zUG0UTUt55tuHVF\nT5jOkXQmughnh4qR/SEo65zo/tI5uLCQHFbMQTT7SWfCbjKw/mVg1uWunUbXFCzfvA9/XvIZvnHM\n2F7XP/zOZizd1BS7LITAZUeNxoyGAVj++T489PZmSClx2qFDcdqhw1wbJ+XO858+j9e3vp7vYQAA\nBpcNxg9m/YC1ZF1gWibuWHZHrMV2Xz7d/ymArpxnXdWxdMdS3PDGDQCApo6mbtfb+yT6mbzL/v09\nvOZhLNqyqM99jxl+TKxj5ZbmLbh35b0IyzA6w539lrizr7/7g7sxIDDAgZG7o6GqAd+a/q1e2z89\n8CnuX3U/TJn5ovzDhxzu+U55Pb259U08++mzad0moAbw/ZnfR22gNuvz37PiHnze8nnC64LR9WPF\n+FrDIDoTZdE/uPa9rp5m3uR6PPT2Ztz18icJg+jfLlyPtqAZaxG+pakdFX4VMxoG4J/LGrFgxVb4\nVAXb9ncyiC4Sf/noL9jUvAmDygbldRxtoTY0dTbhkoMvwdCKoXkdSzFqbG3EQ2sewsDAwJQaoRwz\n4phY8HP8yOOxaMsirNy9Mnb95IGTMbam6zVkYGAgZg2ZhV3tuzBn2Bzn7wA5bkj5EEwbPA17O/di\nb2fy9549HXuwrmldLIhe3LgYCzYuwIjKERhdPRoz6mf0eZ5xteMwacAkbGnZgi0tWxy9D05pNppx\nIHgAl0+5vFfDjlc2v4KnNz6NkZUjEd8hOVV7O/Zixa4VBRdEP772cSzZtiTl12PDNLCzfSeOH3k8\n5jXMy+rcHeEO/OHDP6DGX4NqvTrhPuNqxmFK3ZSszuNFDKIzoajA+BOBzv2unuYnp01G2JL469ub\nEl4fDFs4b+YI/NfZhwIA5vzPq7FqHsGwhaHVAUwYUoX9HVxlXSwM08CxI47FnXPv7H9nFz2z8Rn8\n7M2f8Stfl9hf2f/Hkf+BU8acktZtrzv8Olx3+HV97uNTffjLaX/JdHiUBwEtgIfPeLjf/X7y2k+w\npmlN7LL9t7TgnAX9zkIDwNCKoZj/pfmZDzQHHl7zMG5///aEDWGCZhACAs+f93xGQfTNb92M1xu9\n8W1fOoJmEAfXHYxHzngkpf037NuAc58+15EFpPb7wDXTrsElB1+S9fEKCb+HzZTmd31hIRBZXJis\nzJ0RtmKdDYFoNY/ovkbYgq4p3bZR4fNKmSAuPnJXfAMVonT4VF+356X9t1RMnSn7ev2xK5BkEkAD\nkcepECuTpNvMxMlShrHFy0X0N5YqBtGZUnXXFxYCkcDYkkA4Qam7YDRQjt/XLokXDJuxIJoNW4pH\nKs0SciHW+MFy/zlQihItBiRKRc/qLEEzGGvCUyzsYC3RIstsO+P1fPwKRbrNTJycCLF/D6X4ob94\nnlW5pgVcb7YCIBYk96wXbVoSpiW7B9Fq75lofx8z2VR4vNL1iQ0Z3JWoLB1RKnRF7zaTWoztluOb\nBfVkmP23Nu/v2IX4upbu79nJeuCl/KGfQXSmND0nQbQ/GiQHQ90DYTsw9mtq176+rpJ4hmnBr6lM\n5ygyqdR5zQWmc7jLntlJJYeVKJ5f9feqE15sf0f2/UkU7AbNYFb3V1d1hGUYplVY3+CmUr4wnv0Y\nOfEaXsrpZykF0UKIY4QQFdGfvyaEuFMIMdrdoXmc6s9ZOgfQeybaDox7zkQH42eiVYVdD4tMKm17\nc4FdzdxVym9KlB07J1pKCQAIWaGi+0YjlZzojI/tQFObfEj3vcHJiZBirgPdn1Rnov8AoF0IMQ3A\njwBsBPBX10ZVCHK4sBBAr9lkO8+5V050XHUOXVMigXWIQXQxsKSFkOWtdI5sGj9QcqX89ShlR1d0\nSEiEZRiAd9ZROKm/nOhsvq0r1G/Z0v3w4OREiP178MK3pLmWahAdlpGPtWcD+J2U8vcAqtwbVgHI\n4cJCAL06F9qX/XHVOfwJqnP4fZyJLhZ2OScvfDXb19eplD3mRFOmeq5X8Mq3V07qLyfaiZnoROXz\nvCzdDw9CiEglEidmoqO/By+8N+VaqkF0ixDipwAuBfCcEEIBUNqv7loAsMKA5W6Aauc895yJtgNj\nv0/ptq+93Qhb8GsKdFWNLUKkwualMkKF+pVnoSjlNyXKTs+Z1JAZKrq/o74+xBtWdjnghToTnUnu\ne8/8+UyVcvpZqs1WvgzgqwD+TUq5QwjRAOBX7g2rAGjRP5Z7jgTiSweNOhL40t2OncZeWHj1w0sR\niFtEaM9E96wTvXlvG06+8zV83tSO6Q21sZnsU+56DYoQGFIdwAOXH94tDaTQ3LPiHry06aWsjqEq\nKm6ccyOm10/P6jh/WPEH/GvTvyCEwA9m/QDHjzy+2/U72nbgh4t/iPZQe1bnARBrY+uFFyp7hvQ3\ny36DP6/+M74/8/s4YdQJeR5V/zrDnfjWq9+KtcK2CSFyeh8saeHahdeisaUx4fUHjAMAmM5B6bNf\nHy594VKoQsW2tm2YMGBCnkflLHsi4ZZ3bsFdy+7qdt3W1q2YNnhaxse2H78rX7oydp55DfNw7cxr\nMz5mNgzTwDWvXIO9HX13SG4Pt6f93qCrOp7e+DTe3vZ2NkNEa6gVgDcmeHItpSA6Gjj/E4D9TNwD\n4EnXRlUIJp0B7FgVmY22bV8JfPy0o0H0jIZanD9zJDpC4V7XzR4zALPHDIxdvnDWyFiu9IQhlbhg\n5kjUV/s2bVe6AAAgAElEQVSxZnszTMvClqYOvLlhD/a2BTGspsyxMebaws8XosVowbT6zF4oLWnh\n1c9fxfJdy7MOohduiYxlb+devLv93V5B9Cf7PsGqPatw5NAjUe1P3A41HYfUHYJjhx+b9XGyVV9e\nj0sOvgS72ndh0eeL8O6OdwsiiN7eth3v73gfhw06rFt73Fzfh9ZQK15rfA2TBkxCQ3VDwn2GVQxD\njb8mJ+Oh4nH08KNxxtgzYukI42rH4cSGE/M8KmeNqxmHCyZegAPBA72vqx2H08eenvGxDx96OM4c\nd2Ysz/fD3R9i4ecL8xZE72rfhfd2vIcpdVMwvHJ40v0OGnAQTh59clrHvuLQK7Bi94pshwgAqPHX\nYFzNOEeOVUhSCqKFEFcCuArAQADjAYwA8EcAxfXMTMfgScAFD3Tf9sINwIq/OXqa2nIdd1yUWrB4\n9EGDcPRBg3pt/+1XZgAAnljeiB/+/cOCL3lnWAam10/HHXPvyOj2pmVi+kPTHVuVPL1+Ot7d8W7S\nleIA8OPDf4zJAydnfT6vUISCG464AQBw3GPHFcxXn/Y4v3HoN7q94Rz/2PE5vQ/2uS6ceCG+PPnL\nOTsvFb8RlSNw+/G353sYrvKpPtx01E2uHLu+vB63Hndr7PL1r1+PVXtWuXKuVFgy8n59ycGX4Kzx\nZzl67MumXIbLcJmjxyw1qX6n/20AxwBoBgAp5XoA9W4NqmApaveZaY9Jtkix0GS7cERVVKhCdaxT\nk67qvRocxF8PFPfX8rpSOB2+YqWYevw+erZKztk4PJCaQ0TJ6aqe1ypEdpUVTUk1+5ZyKdUgOiil\njL3DCCE0AFyp1pPXg+gk5fIKjRPNA5xq7Wov2kl2vFipsiIOlnQ18QcIL0r2+0j2Ici1cbD6BlFB\n8Kv+vFYhspu+FFPb9mKS6m/lNSHEzwCUCSFOBvAPAM+4N6wCpWiA9G6Xo6KZiXaga59P8TnW7tSn\n+JIH0SUw4+jUB5JcSPb7yPV9YB1oosLg1HtFpux0Dk1wJtqLUg2ibwCwG8AqAFcDeB7Af7o1qIKl\naJGZaOnNSfpk5fIKjRN1T50q7WOPJdlMpr24p5iDJV3VC6ZedLLfR65nm+xzFVvpMaJik+9JAjud\nQ1XUfvakfEi1OocF4E/Rf5SMiP6RS6vrZw/pmon27mx5KpwIop16YYwF0aU8E53jVIhsxHLU1d45\n0bnMe4x1+GI6B5Gn6aqOkBWClBJCiJyf34r2omA6hzf1GUQLIVahj9xnKeVUx0dUyOxPipbZ9bOH\n2DWnC3km2rRMmNLMOih14is6S1oIyzCD6GJI58h1TjTTOYgKQqyxi5VeW22n2P0BmM7hTf39Vs7M\nySiKRSyIDgPw3pujPRNdyG3AnQo+nAj84is96IqOtnBb730sA4pQinplta7qsWL7XtdXTnSrkbv7\nUAofroiKgb3+Jl/t08PRYgWKwploL+rznV1KuTlXAykKdqDk0QoddnWOdsNEKIVAWlNE1l9fWdKK\nfZJ2gt35L+t0DiVStsjOkc1oLOGuseiqjn3Bfb2OFwwHi3620S5xl+yx9EoXq5AVQqfZCaD3h7Bk\nfw+qUDP+GtW0TFhI/DzrDEfHwSCayNPs52h7uB1+Lb01DAICmqLBsiTMFNdK+dTurzf2wkLVgymi\nlHqzlRZ0pXXoAHwA2qSU2bdgKyZ2EO3RCh3leuRJ+JP5K/GT+Sv73f/iw0fhtvMzz9hpD7Xj9CdO\nR1NnU/87pymgBbK6fZmvDG9tewszH5rpyFjKtDKsbVqb8Hi1/tqsz+Flfd13ALhxzo24aNJFOR5V\nd498/Ahue++22OWefz9lWhnW7VvX6z6MqByB5897Pu1A+tMDn+KiZy7qN886oGb3d0xE7irTIt19\nT/xH+r3lFKHg7i/cjV89pWD11uaUbvPT0yfj6hPGxy6zTrS3pbqwsMr+WUSmJs8GMMetQRUsEZcT\n7UH11QH87wVTsau5s999/7GsEZ/sbMnqfPuC+9DU2YSTGk7CwXUHZ3WseD7Fh1NGn5LVMX4w8wd4\ne/vbjo1l+uDpmDBgQsJ9Jg2YlPV5vOyqqVfhoAEHJbzu3g/vxWcHPsvxiHrbuH8jyrQyfPOwb2JY\nxTBU6VXdrk90H5bvXI4l25agM9yJcl95WudrbGlE0AziookXYUjFkIT71PprMbp6dHp3hIhyal7D\nPOzv3J/2mgnDNHDvynuxqXkTPtlRjyPGDMTxE3t3FI537+ufYv2u7mll9kw0FxZ6U9ofbaSUEsBT\nQoibECl9R7ZuOdHedNHsUSntt/zz/djV0n+w3Rc77/Ok0Sfhi+O+mNWxnHbY4MNw2ODDHDtejb8m\naRBd7A4acFDSIPqRjx/xxKJDwzRQ46/BVVOvSnh9ovvw8JqHsWTbkoxSfuwSdhdOurCo2r0TlZpq\nvRqXH3p52rezg+igGYRhWpgzvg7fmdf3e8T8ZY29Fv7bzVa4sNCbUk3nOC/uogJgNoDsIqxipHh7\nJjoduqpkXcWDi6co340KbIZlpJ2bbv/dZvIhgNU3iEqbvRakMxxJ6bKrY/VF13q/79rpHJyJ9qZU\nP9qcFfdzGMAmRFI6KJ7HFxamI9GTOV32DB4bSpQur5S/C5npl6eKrcrP4EMAP0ASlTYhBHyKDx0h\n+7Wg/yDYr6m9qmfFFhZ6sGwupZ4T/Q23B1IUPL6wMB1OBNGxhhIeqc5AuacrelYVUJwSNINpB7T2\n/pk0YUnW1IWISoeu6rGZaD3FmeiezdCYzuFtKX0/IIR4UAhRG3d5gBDiAfeGVaA8vrAwHbqmZF1P\nmrNx5JWZ6GzSOTJpB14K7d6JqG+6oqPTfh9MJYhOkEZpl4hlOoc3pfpbmSql3G9fkFLuAzDDnSEV\nsAJYWJgqv6Yg6FA6BwOJ0uWVIDqTdA47DSmjnGh+gCQqebqqIxiOvBZkmhNtB9FM5/CmVINoRQgx\nwL4ghBiIDCp7FL1iWljoQBDNQIJ0Vc8oHcJphmnAp6aXVuRETnS65ySi4pFZOkfi6hxstuJNqQbC\ndwB4Wwjxj+jlCwH80p0hFbAiWljoj36tJKXMuGthLCeagUTJ0hUdzeHUmgy4KWil3zky25xoAcE8\nRqISFumEmvrCwj5nohlEe1KqCwv/KoRYCmBedNN5Uso17g2rQNlB9M7VkdloAWDIYYBWeDOxmiqh\nBLZi/uq3oCiZBdEr9nwMgOkcpUwVPuxu24d/fvRWXsfR1N6M0VXpfZiz/25f+2wltu9L73xrdm2G\nT9Ez/gBKRIVPFT5sb9kNRd8Fn9r/a4GmhNFsfYp/ftT1nrl01/rIsZjO4UnpTJMMRKTV95+FEIOF\nEGOllPlvReYl/mgXtAXf7tp23I+BE2/Mz3iy8HnodVSM/S3+a3l2x5FSQJpsbVyqPt1pYUe4ETcv\nvTrfQ8HGHemlJ7V3Rt7I/rbh9xmdT5jVGd2OiIrD9n0CLeIjVIz/CPvNgwEk7l5qaxRPIjjkWdy8\ntPt2KQUsk99qeVGqzVZuQqTByiQAfwbgA/AwgGPcG1oBGjUHuPw5wGiPXH7iSqB9T37HlKHxQyWw\nE7hy4i1QMvwaac22Zry4shWw0muZTMVjSPhC7Ns3GV+bMyav4/jLkk0YNnR6WrcJYAjaNl2Dc2YO\nwLjBlWnd9o31u/HhZs4cEZWy6tZL4dOXo8k/H4Nr+k/zHDcU2L61Fl8d95PYtpWN+/HK6g4IWebm\nUClDqX60OReRahzLAUBKuU0IUeXaqAqVogBjju267K8GwvmvTJAJC5En/HfnnJ3xV9ILVmzF8++t\nyLpUHhUuaZZjiG8mvjMnv5+3n33ndUgzvTchw7RgdYzGuZOPwHETBqd1284D6/D+mg1p3YaIiosV\nqkZDzaFosuanWC8/jLqyWnxnTld/u0ff+xwvLV0F05LuDZQylmp1DkNKKQFIABBCVLg3pCKi6YAH\nKhNkwjAjdXWzyem0F1Jk27SFCpcRtuBPYUGN2zKpe27/3aayICjR+SwJhPkBkqhkGWErtkA5lSo/\niaoIqdH3YFMyiPaiVN8d/i6EuBdArRDiSgCvAPiTe8MqEqofCBdwEJ1laTq7pA+D6NIVDJsplXZy\nW6ImBv2xO4dlMv7Y3z6DaKKSFQxb8NtBdAr15hM1hVKjC/tNk0G0F6VanePXQoiTATQjkhf9cynl\ny66OrBhoekkH0X5NjR6LgUSpMkwLtR4Iov0+BcFQZjPR9t9xWueL+wBZzuI0RCXJCFsIaKk3bQqZ\noViTJ5sdRIctvo96UcrLPaNBMwPndKj+wk3nsIxYs4lM2bNx6QYvVDwiX2fmP4jWVQXNHenVb7eb\nHmQzE51twyIiKlxG2IJfSz2dI2gG4dcSB9EW0zk8qc8gWgjRgmgedM+rAEgpJWs49UXTC3ZhoaPp\nHGbhd3CkzBhhyxvpHAmaGPSnayY6gyCa6wGISl7QTG8m2rAMVCndazZosZloBtFe1Oe7g5SySkpZ\nneBfVX8BtBDiASHELiHE6rhtNwshtgohVkT/neHUHfEkLQCEO/M9iowYptHra6V0MZCgYNjKKAh1\nmq6paacVcSaaiDIlpYykc/kifRJSCqITTF7Zzc5YncObUk7nEEJMA3Bc9OLrUsqV/dzkLwB+B+Cv\nPbbfJaX8dcojLGSqDqTwxPEiJ9I5/D4GEqXOKzPR/hzPRMfWA/Bvn6gk2R/ay9JI5whZoV5BtMYg\n2tNSbbbyPQBXAngiuukRIcR9UsrfJruNlPJ1IcSYrEdYyDQ/0LYbWPrnyOUJJwM1I/M6pMVbFmN3\nx+5+92tsaUSVnl0pcHsm+o31e9AWdC6lw6cKnH7YMFT6M+/gtH5nC97flGYv5z7Gsq/NwBvrEzfW\nmTCkEoePGZj1ubxqS1N70vveZoQ9EUTrmoLmjhD+9u7nGFYTwBcm13e7PtF9eH9TU+y26bID72dX\nbsOKLfsT7jOwwodTpwxla3AiD2s3wnh+1Y6Mq/v4NRU+xYdVe1bhH5/8o8/b7A/u71WdQ2E6h6el\nGoVcAeBIKWUbAAghbgfwNoCkQXQfviOEuAzAUgA/klImjGSEEFcBuAoAGhoaMjiNB9Q2RILoZ78f\nuTzz68CX7s7bcPZ07MF3F3435f1PH3N6VucbUKGjXFcxf1kj5i9rzOpYPVlS4suHZ/53cfMzH2HJ\nhr2OjeWtjXuxYMW2hNcPqtSx9D9PduRcXnTHS+vwVJL7DgAjavPfaWtEbRlagmH87MlVAIBVN5+C\nqkDXNy3J7kNdhZ5RdY6hNQEoArhn8cY+93vturkYXcey+0Re9eLqHfjxPz7M+PbDa8swfO9wLNm6\nBEu2Lul//8rh3S7bM9EWg2hPSjWIFgDipxLN6LZ0/QHALYgsVrwFwB0A/i3RjlLK+wDcBwCzZ88u\nzL+eE28Cjrg68vMDpwJGW16H0xHqAABcf/j1OGXMKf3uPzCQ3exppV/De/9xEtqC6VVF6EtzRwgn\n3/V61jPbrUETc8YNxP9dPCPjY7R0hnDSnZGxtAXDmDikEg9dcWS3fX67cD3+uWxrVmP1utagmfC+\nA4AQwODK7HLrnfCtueNx4ayRmL+8Ef/74jp0hMxuQXRr0MSE+ko8/M3u96EqoMVWx6fj4GHV+ODG\nU9AZTvx3unjdLlz/z1WOfkNDRM6z379e+N5xGFiR3mJ7TRGoq/TjxEPmo9lo7nd/AYFBZYO6bVM5\nE+1pqQbRfwbwrhDiyejlcwDcn+7JpJQ77Z+FEH8C8Gy6xygoQgDVwyI/+8rzXu7OzskaVDYI9eX1\n/eztjEq/llXaRU9Vgcixss2zNsIWBlf6MaQ6kPExqqNBWDBsIRi2UK5rvY5XW6bHvtYrVsGwmfC+\ne4kQAvXVAQyqiAT0PcsuGqaFcr+z96Gm3IcaJF5XMLjKXrHPnGkiL7Pfa0YMKIu95qcroAUQ0DJ7\nbbE7FnIm2ptSbbZypxBiMYBjo5u+IaX8IN2TCSGGSSm3Ry+eC2B1X/sXFQ80XglGg/iebUULiVMV\nP4JhM+uqEfEdGYNJFtDFt3/WPFAv2Q1eWTyYimSdBIMhM6ftyXVVjZ2XiLwrVqUnT6/fmsqZaC9L\nZ4rwMwDh6G2EEGKmlHJ5sp2FEI8CmAtgkBCiEcBNAOYKIaYjks6xCcDVGY678GiBvAfRdomdbEvX\n5ZOmKlAVkXXtacOB0muqIqBFx2KErdgsebz4oK1og2jTcvTbBjf5k7Siz/V9sCvXcCaayNuMPAfR\nSnQm2mSzFU9KtTrHLQAuB7ARXc1XJIB5yW4jpfxKgs1pp4AUDQ+UuwtZIQDotfq30Ohq+uXKenJq\n9tRu4pEsKI+fOS/W9s9G2IJeXhgfEPRkQXSO7wNrqBMVBsO04FNFrEpGrmlK5LXCNBlEe1GqUy8X\nARgvpSzMosdeoPmB9vwuLLRnorPtRJhvuqZknxNtOhdER3KizYTHK4Va2cGwFbufXpesCUquU1KS\nBfNE5C3BkJVRhR6ncGGht6X6rrEaQK2bAyl6qj/vM9F2EF3IOdFAZi2cezLCliNfz9mz4oaZ+Hil\nMOPo1GOZC8l+H059qEp5HElys4nIWwwz8QRJrthBtMV0Dk9KdSb6VgAfRFt4xxJ7pZRfcmVUxUjz\n5z8nOlqdw68Ubk40kFn3uZ4Mh2ZP/b74dI7esxWl0P65kBYW+n3RToI9cuqdyJFPaxwl8HdBVAzy\nPUnAmWhvSzWIfhDA7QBWAeCrfiY0f/5L3BVTOkcWM3imJRG2ZKxCQlZjUSNjSRZIJlvIVkxyPYub\njaQz0UznIKIE8j1JoLLZiqelGkS3Synz12qvGKg60LYHePYH3bdXDQOOvy5SUzqBtlAb/rDiD+gI\nd/S6zq/5cfXUq1HjrwEArNy9Egs2LIhdf85B52BAYAD+uuavMC0TnzV/BqAIgmhVwYdb9uM/ot3n\n0mV/LeZMTrSKD7fsR2swcXtre9vdr65HXWX2j7tPVXD1CeMwrCa/XQCllPjtwg3Y2dyJls6QIx9I\ncsH+fTz8zufd2nw35/g++KPneuqDrfh4e+ImDMNry/DtLxyUszFRcdjV3Il7Fm9EKG6iYd7kepx4\n8JA8jspZYdPCXa98gv3toYTXnzplKI6fODijYze1Gfjdwg2x+v7LP9+f1yDa7lj4+Ptb8P6mpqT7\nKULg60ePwUH1lSkf+x9Lt2DFlv1ZjxEAast9+MFJE4u2ClUyqQbRbwghbgXwNLqncyQtcUc9NMwB\n1r0AfPxM17ZQJ2C0ADMu7WrK0sMHuz7Ag2seRLVeDU3p+nWZ0sSB4AHMrJ+Jk0afBAB4fN3jePbT\nZ1Hrr8X+4H50mp04qPYgPLr20Vj3wckDJ2fdiTDfjhpfh2c+3IZ/fbQj42MMqfbjsBE12Y9lXB2e\n/nArast1zGjovWzgoMFVaBhYjqWbk7/4pcqSkRf48YMrcOlRY7I+XjZ2tQRx58ufoNKvJb3vXjSs\nJoCJQyqxdkcz1u7oCl5zfR8qAxqmj6rFpr1t2LS394LjDsNEm2HikiMbUFusZV3IFQvX7sJf3tqE\nAeU+qIrAgY4QPt7eXFRB9Mbdbfj9oo2o8mu90vL2t4ewaW9bxkH0mxv24IEln6G23BcLYE+YmPj9\nORcGVfoxeWgV1u9qwfpdLUn329NqoLpMw3WnTk752Le/uA4tnaGE5VnTEQxZaAmGcda04Zg8tDqr\nYxWaVB85uzfynLhtfZa4ox6mfzXyL94HjwALvgWEO5PeLBjNo77/1PsxeWDXk+PTA5/i7KfOjjVQ\nAYDOcCdGV4/G0+c8jTOfPBOGaaDTjBz71Qtf7RaEF7KbzpqCm86aku9hAAB+ftYh+PlZhyS9vqGu\nHK//5AuOnOtARwjTfvGSJ/JoO6NNQm7+0hRcMGtknkeTugq/hpd+cEK+hwFVEXjq28ckvf6Rdzfj\nP55c7YnfNRUW+7n56o/mYmCFjiv+8j52NCd/jylE9n2868vTcdIh3T8cfPVP7/TqSJrJsZ/5zrEY\nNbA880E6pExX8eL3j+93v0N+/mLa9zsYMvHVIxuyfj99Zc1OfPOvS7N63AtVqlHVQinlLQAghAhI\nKYvrGZkvWnSBXx9VO+zFgD1rO9sNU4y42xqWEdtPV3UYpoGQGYIq1KIJoEuZlxaj2bm8uVyMV0pK\noaoLucOu+GKnINiLn4uJfR8TLQ7XNQWtwXDmxy7Q1zZdU9Ku9hN0aD1LKTeP6vPRE0JcL4Q4CsD5\ncZvfcndIJcQOovuo2pFsMaAdLNsNVAAgZIZiwbWu6DAsA4ZpFHwONEV4KbCKtcItsDeaQmFXEfHC\nByYqLD2DQF1NP7jyur66CGZbvanr8SuMdR62dO+3lDJpVal0eem9Kdf6m55cC+BCAOOEEG9EL9cJ\nISZJKde5Prpip6YxE90ziI5e7jkTbdeA1lUdITMU2aYUdl1oilAUAZ8qPPGG2HO2i5xVym9KlB0j\nbEGIrgVpTtTV9xqjjw/xuqZmF0QX6Gtbur/nULQDohMz7qVcbai/R28/gJ8B2ABgLoD/i26/QQjB\nGelsadHAuI+c6NhMdI90Djswjs+JDprBrnQORUfQDHImusg40fLcCbHZmhJbiZ0rXak7Zj97EnUX\njNY1FqIriC62bzTs50XCIFrN7v7aeb0FF0Sneb9jj6ETTcc8lGqYa/09eqcCeA7AeAB3AjgSQJuU\n8htSyqPdHlzR0wKR/zNJ57Bnoq2umeiQGYpt19VIOkfI6krxoMLn92U3y+KUWBBdIO2+C00pz+xQ\ndoI96hr7s5yZ9aJgHykX2X5oMEwTqiJi9ZkLha6pad3vvmbz02X/HrzwLWmu9fnoSSl/JqU8EcAm\nAA8BUAEMFkK8KYR4pq/bUgrswLivdI4krbo1RYMqVITMULd9uwXRpoGgGWQ6RxGJzDbkf3YylhNd\nIPWhCw3bglOmDLN7981iTudIlIoQyQ3O/DUy3x0KM5XuwkIn01Zi35yF8v/elGuplmz4l5RyKYCl\nQohrpJTHCiEGuTmwkpDKwkLLgICAJnr/quxAOX5fO2DWFR0hK8R0jiLjlTdEJ2cxqDfmRFOmegaB\n9sJCKWUsxaPQ9RUAZlKlotux89yhMFN+Nb0PD30tzkxXKX/oT+nRk1L+JO7i5dFtexLvTSlTU6vO\noat6whc/n+LrnRMdDZh9auS6+LJ3VPiyfYNwimEmz0mk7JVyjiFlp2c6RzH+LcXylhMEgHZusJSZ\ntcnu+fgVinTTWJyssFTKH/rTLh4spfzQjYGUJHsmevH/AO/d17V96GHAWb/BA6sfwDMbn0kaBPtV\nP17a/BLW7F0DAGjqaIrt61f92NO+B61GKyYOmOjq3aDc8WsK3ly/B+f8fklex9HUFs3VL8A3m0Jg\nfz16+4trcd/rn/a7/7hBFbjjomkQQuC3r67Hq2t3dbu+0q/h7q/MwMCKyOtD2LTwnb99gB3Nnbjy\nuHH44tT8dWSj1ATDJr79yHLsaU2e/gcAn+1pw5DqrnUw9t/SRfe+DZ+q4LpTJ2HOuLqkt9/TGsT3\nHvsAbUHvfjW/K9o8JtHrj19TICVwzj1vIZN598+b2lHmK7w0Nb+mYNnmlpTfGzoM5yZC7LUx/++N\nz7BgxbaE++iqgl+eeygmDKnK+nxewg4c+VQ9HJh+CdAS1766aSPwwUPAWb/Bc58+BwmJSw65JOHN\nvzL5K1i2c1ns8pHDj8QpY04BAJwy5hRsa9sGSOC0sae5ejcody4+ogEvr9mZ72GgusyHI8YOxNDq\nQL6HUpRGDSzHeTNGYE9b3wETADQ2teOJD7bif847DAGfiidXbEVLZxgHD4u03z3QEcKbG/Zg7Y5m\nHD0+koW3p9XAix9FXndeWrODQXQB2La/E698vAuTh1ahvo/n3bRRtThxcn3s8vETB+PEjXsRsiTe\nWL8br3+yu88ges22ZizZsBfTR9Wiusyb62mqy3w48eAhKNd7B7tfmFyPD7bsR9jKbCb60BE1OGZ8\n8sfHq86bORKhNO5zdZkPYwaVY0ZDbdbnLvOpuOyo0di0tz3h9UbYxDufNuH9TfsYRJODFBU4557u\n2xbfBiy+FbAsGKaBw4cejm9P/3bCm1859UpciSsTXjdn2BzMGTYn4XVUuC6dMxqXzhmd72GQy3yq\ngju/PD2lfe9/8zPc8uwaBMMWAtHqLcdNGIQ7L4rcfvnn+3DePW91+6o12c/kXfbv6bvzJqT1oWfi\nkCrcf/nhACKtofv7fdvX/9fZUzB1ZPYBVq4dOqIGD0Tvbyn54tRhefswLITAf519aNLr97UZmHHL\ny1kt+PQqfhfrNbGKHUGErBDzmYmoTz3L4UW6kHVfWBZ/PdCV095zO3mXE4t5U1lTUajNRsi7innh\nIZ8lXhNXsSN+oSARUSJ2wxu79GGwR3UGf4KFZZ2hrp+LacFZMXNiMW8qzZqcrNpABMQtbg0V32sN\nnyVeE1c72jDZspuI+pZoJjpRdYbuM9FM5yg0QQeC21RKZLJ8JTlNUwSE4Ew05UKsi2Enuw0SUb96\nflVqmEmC6ASBs64qCBbhG1sxinXpy6JLqD+FMmj2NxqJugESZUIIkdK3IIWIQbTXxNI5DDZKIaJ+\nxec8h00LpiW7dZJMmBMd/bkqoBXlG1sxciLNIpXW0E7WDyaypfIBrhDxWeI10aA5HGqHKc1e7b6J\niOLFN9NItCis6/quxYT2m1llQPNEG3nqX1+trlOVzsLCbM5D1JOuqUznoByIzkQboTYAYHUOIuqT\nPy7nOVGgZX8tn2gmutLPmehC4USuciqtobmwkNzg1xQuLKQciAbRoVCkaDlzoomoL3qCIDo+0PKp\nIna9za70wHSOwtE1Q5x5rrLfl9rCQp8qoCiZ9PsjSiyVb0EKEZuteI1WBgB478mvA4MHQFP4KyKi\n5ALRFsVX/nUpFCG6bQMii3oCPgW/W7QBf4y2ELeinc0GlOvY1dKEif/5Qnrn1BT87co5OHREjRN3\nod4IhPUAACAASURBVKiETQsn3fkajhpfh1vPm4p3P92LKx5cmnUAYUZ/Z4GsFhaqeGP9nj5/32HT\nQoXO9x1y1v52A898uA3/+mgHvnjYMBw1rg43LliNvnosjhpQhld/NDdXQ8wInyleM2ImMO9G7Frz\nEAALRww7It8jIiIPmzikCtefNhkHOkIAIjM+8W2fAeC286Zi7Y6WbtsGV/lxwsTBGDOoAjKNDskH\nOgw8+t4WbNzdyiA6gTbDxKa97di0tx23njcVn+xqRWswjK8fNRplWQanw2sDqC3PPMXv218Yj4Pq\nK/vd7+BhxdWamfJvX3vk9UkAWNm4H9WByHPh344Zm/Q2teXeXxPGINprND9w/I9hbHkFCG/F0PKh\n+R4REXmYqghcM3d8n/ucM2NE0uuuP21yWufb0tSOR9/bwjSQJHo+LvblH548CTV5DgpmNAzAjIYB\neR0Dlba6Ch2GGVkEXV3mww2np/f64zXMifYoQ4n8aljijoi8pJhb+Dqh5+PC5iVEXSqj6zB6dlYt\nVIV/D4pUUAgoUjInmog8xV/ELXydEAx1r35hlxBkEE0EVAV8CEaD6GwaB3lF4d+DIhVSBDgHTURe\nw5noviWaidYUAZXVLohiFYEMzkSTmwyhwJfOah8iohxI1AGRuiTKieYsNFGEXZveCFtF0dCn8O9B\nkTIA6AyiichjNFWBIhhEJ9MriDYZRBPZqgIawpZEZ8gsiudF4d+DImUIAb8lAYtvVETkLf4ibeHr\nhEQz0cUw40bkhKpApEJNmxHOqnGQV/CZ7VEhyMhMtBnM91CIiLrRtf4735WqYNyHC9OSTOcgilPl\njxRLaOkMF8XzgqUfPGhH2w7skwZ8kEA4CPjK8j0kIqIYXVOwuyWIDbta+t/ZBQ0DKzz1Bty4rx2d\n0aocn+9tj23/eHsz9rYZRbGAisgJldEmKwc6QkXxvGAQ7TEb92/EOQvOAQDMtCxg3fPA9K/meVRE\nRF2qAhqeW7Udz63anpfzX3z4KNx2/tS8nLunpZuacMEf30543Zm/fRMAMH1UbS6HROQ5R4wZiPc2\nNWFgRaTu2P72EKoChR+CFv49KDK7O3YDAL41+Wv44sv/CwTzM9NDRJTMH782C+t25Oe16X//tRa7\nWryT5razOTKWn50xGcNqIt8aBnwqTMtCyIwsDp8yvDpv4yPygge+cTi27uvAmEHluPfSWTDCFo4c\nNzDfw8oag2iPMUwDAHDMqBPQEP6fSDoHEZGHTBxShYlDqvJy7j8v+cxT+diGGUnjOPmQoRg7qCLP\noyHypkq/hklDI68Zp04ZmufROKfwE1KKTMgMAQB0LfpizIWFREQxXlvUyLbeRKWLz3qPMazITLSu\nR4PosJHH0RAReYtfU7tVwMi3WBBdBIukiCg9fNZ7TDA686yrOqD6gXBnnkdEROQduqYgGK2E4QVB\nzkQTlSw+6z3GzonWVR3QAoDJmWgiIpuuKZ5q9GKPhQ1ViEoPn/UeE7KiOdGKDmg6FxYSEcXxqx7N\niWY6B1HJce1ZL4R4QAixSwixOm7bQCHEy0KI9dH/B7h1/kLVbSZa9XMmmogojtcWFgbDFnyqgKKI\nfA+FiHLMzY/OfwFwWo9tNwB4VUo5AcCr0csUx86J9qm+6Ew0c6KJiGy6psTykL3ACFuchSYqUa7V\niZZSvi6EGNNj89kA5kZ/fhDAYgDXuzWGQvDe9vewp2NP7PLaprUQENCEFpmJbvoM2P4hMGxa7xvv\nWA3sXtt927gvABV1QNte4NNFkW0jZgEDx7p4L4iIckNXFXSETCxYsTXrYylC4LgJg1Bbrqd923Yj\njMXrduOTnS1cVEhUonLdbGWIlNLuE7sDwJBkOwohrgJwFQA0NDTkYGi519TZhCteuqLX9vryeggh\ngKqhkUD4kYuAH6/rfYDHvwbs+6z7tqO+A5z6S+CNO4B3fh/ZNn4ecOmTLtwDIqLcGlIdgBG28L3H\nVjhyvG/NHY+fnDY57ds9sXwr/vOpSLbi5KH5aTxDRPmVt46FUkophJB9XH8fgPsAYPbs2Un3K2Rt\nRhsA4Pszv495DfNi2+vK6iI/XPw34PnrgI+SBMDBZuDQC4C50ayYB06LbAOA4AGgoh6oG8/W4URU\nNK44dixOOmQILJn928I5v1+C1mA4o9u2dEZu99y1x2J0HTsVEpWiXAfRO4UQw6SU24UQwwDsyvH5\nPcVurDKicgTG1iRIt9DLgcr65F0Lw0bk+kETuva3m7OEjcjlQC3QnP3XnkREXqAowrH22mU+NeNF\nivbtJg+thspFhUQlKdeJXE8D+Hr0568DWJDj83uKXYnDp/qS76T5ASsMWAle6M0goMbl8qn+roDb\nDEYuazorfBARJZBNpQ/DNKEqggE0UQlzs8TdowDeBjBJCNEohLgCwG0AThZCrAdwUvRyyYp1J1T6\nWNRiB8k9Z6MtKxIca/6ubZo/biY6GAmg2fWQiCihbCp9BEOsykFU6tyszvGVJFed6NY5C43dWMWv\n+pPvpAUi/4c7AV9Z13Z7drlXEB0NmMPByG01vSuwJiKiGL+mZhxEG6YFv49BNFEp4ytAHnVrrJKM\nFr2uZyBsz0zHB+DxzVlMI3I5PsWDiIhismkhzvrQRMRXgDxKKSfaDpJ7BsLhRDPRcW3C7XSO+BQP\nIiKKibQQNzO6rRG2WB+aqMTxFSCPglYKOdF2kNwzELbTNpItLAzbCwuZE01ElEhWOdEMoolKHl8B\n8ihkppITnWQmOpYTHei+rx1sm8HIZdUPWKHE1T2IiEqYP4vqHMGwBb+mOjwiIiokeWu2Umo27t+I\nBRsXAHH9AT7Z/wmAfnKi7QB7yd2RmtC29qbI/1rcbTU/0LINeOlGoGUnMHxG1/Uv3wgIBagaBsy5\nBhAsy0REpU3XFGzb34Fbn/847duu29mMgRV9TIAQUdFjEJ0jj659FI+vexwBNdBt+6iqUaj11ya/\nYd1BQHkdsCZBSe2ygUDdhK7Lw2cAHz8LvPenyOVh0yO316uA9++P1psOAYeeD1Ql7bhORFQSpo6s\nxaJ1u/Dg25syuv0XJtX3vxMRFS0hHWid6rbZs2fLpUuX5nsYWblxyY14Z/s7ePmCl/M3iBV/A566\nBvjeh8CAMfkbBxEREZFHCSGWSSln97cfc6JzJGgG+15AmAt22kiYJe+IiIiIssEgOkdCZqjv3Odc\niFX6YBBNRERElA0G0TliWAZ8Sh/1oHMhVnOadaOJiIiIssEgOkcM0/DATDTTOYiIiIicwCA6RwzT\n6LsedC7YNaXZfIWIiIgoKwyic8Qwjb7be+eCPRPOdA4iIiKirDCIzhHDMvJfnYMLC4mIiIgcwSA6\nRzyRE82FhURERESOYMdCF7225TU88vEjAIDtbdtx2KDD8jsge2HhG3dEGq/059DzgZmXujsmIiKi\nYvbKzcC2Ff3vJwQw59vAhJNcHxI5g0G0i17Y9AKW7VyGg+sOxuSBk3Fiw4n5HVDVMODgLwEtOwCj\nre99d68FQh0MoomIiLLxzh+BslqgZlTf+21fAVQPZxBdQBhEu8gwDYysGomHz3g430OJUH3Alx9K\nbd+Hzwfa97o7HiIiomImZaQi1vRLgBNv7Hvf/5sGhJluWUiYE+0iT5S1y5QW4JOZiIgoG1YYgOwq\nMdsX1Q+YXPhfSBhEu8gTZe0ypep8MhMREWXDroalpVBYQPNz8qrAMIh2kSfK2mWKT2YiIqLs2NWw\nUvlWWuNMdKFhEO2ikBnKf1m7THEmmoiIKDvpzESrfvZxKDAMol1kWB6oDZ0pLcAnMxERUTbsyahU\ncqI1ne+7BYZBtIsMs5DTOXQ2ZSEiIsqGnRaZyoQaFxYWHAbRLgqawcKdiVb9kbI8RERElBn7fVRL\nJSda51qkAsMg2kUFnROt+QFpAWY43yMhIiIqTOksLOTkVcFhsxUHbWnegm/+//buPM6xqs77+OdX\nla6qXumVraFZhEY2oaFFFkdhgGaZEUTgEURBB8QZBNR56WsAx/FxfdSZwZeOCzCAz+PCqqCMA9KM\nKMgOIk2zSm/QNEh30/TenVRS5/nj3FuVqk6qcpNbuTe53/frlVeSm5ubk5Obm1/OPef85l/AluIW\nAN7Kv9XC3TmC/lv/trdPRVqvCTvCx++FMTX0B5P289D34IErky6Fd/TlcNjHa19/8xq49jjYura+\n19vlnfChm+t7roi0vrs/D08GCc5qaYke0wNrX4Fv7Tl4+aSd4YJ7axucKE2lIDpGS9cv5bVNr3H8\nbscztWcqhnHG7DOSLlZ99n8/rF8RTBRfp1UvwrI/wKZVMHmEdKfSnl552J/ROOD0ZMvx9K3wyiPR\ngui1L8OaxbD3PJg8K9rrLX8Ulv4h2nNEpL28/CD0TIK5H/N/qkcy9++CFms3sGzl8347W9fBhBmj\nVlSpj4LoGJX6SgCcf+D57D9t/4RL06DJs+Ckbza2jQU3+yBaAxSzq1SAKbvD3/x7suVY9mD0ATth\n38R3fQL2Oi7ac//nS7Dyu9GeIyLtpViAnQ6C479U2/o7z/GXck/8yAfRjTRoyahRn+gY9bk+ADqt\nM+GSpER46klT9mRXMV9bX8DRVs+AnTDorqf8uW7/o9fXF/25ItIeSvnaunEMpyOIJ1yp8fJI7BRE\nx6jo/D9FBdGBMPjQlD3ZVcynox9fPVNH9SdJqONHMBxQrH1fJLviaEToCDoMqCU6lRRExyjsztHZ\noSAaKGuJVneOzCqlpSW6jjT2YRBdzww7YeCtszAi2RVHI0LYKNenlug0UhAdo1JwukUt0YFwhg9N\n2ZNdxULjpzPjkKtj6qgomcYqvR4oiBbJsjgaEToURKeZgugYKYgeor87h1qiM6uUr68lN26d3dH3\nw7Dlup6WJHVlEpFiofGWaHXnSDUF0THSwMIhNLBQijEMrIlDriv6fhi2XNc7sBDUlUkkq5zzx5C4\nWqI1sDCVFETHqBj8U1Sf6IBa4yQtQXQ9AwvDlmsNLBSRqPqKgKuvO1g5tUSnmuaJjpFaoocIg48N\nb8C6FfFtt7Or8UnnS0XY+EYMZRkDE7b3U5lteL3yOuOmwpixjb9WWg333lMzxV039G7x+2HPJOie\nOPjxSu9h06qB50Z+veCHc90K6JlceZ3uCdCzXfRti0hzbVwVvTtYr89cHN/AQk2XmUYKomOkPtFD\ndE3w13df7i9x+uDPYN+/rf/5t10Az94eX1mW3g+PXV358Rlvh08+Gs9rpdHdl8OjV1V/vHtC88pS\ntQwTfVD87f2gexJ89qXBqejvvgIe/eG2z7PO+lqSwvd8w5nV1+nsgs88pyxkImn25/nDf49H0tXg\n8a9/YKFaotNIQXSM1J1jiAkz4EO3wIa/xLfN3s3wm8t8SvJGrHvVB7eHXxRPWda9CpNmwnv/afA6\nz/0Slj/WWFnTrtp7B7AOmH1i88s01JGXwox9fCruhbdAfsPgIHrdcpi4Mxx92eDnTdnNn22IatfD\n4fTroLCp8uOvL4AnroNNKxVEi6TZuuX+et7Xtj2DNZLOMbDv+xp7fXXnSDUF0TFSd44KZp8Q7/by\nG3zg2uhgxWLep6M+9LwGyrJxoCylPEzYYdvtvbXMB27trFjlvafJxB3gkHP9YJ+Ft2zbV7mY9+vE\n9R46c3DgGdUff/EuH0Rr0K1IuoXdOOacA2OnNP/1NbAw1TSwMEb93TnUEj16OmOaf7dUaHzqtfK5\ngKsNoMt1Q19ve/dnK25Nx+DBWlSbv7nZSWH6Bx5q9g6RVGtklp44qCU61RREx6g/Y6FaokdP5xjA\nGp/1oLg1nlHT1uHLUi2IzsIsDXH8IWmWakF0s2cRUSIikdZQbGCWnjhoYGGqKYiOkQYWNoFZkH2u\n0SA6hknwzXzrRNido1JLRRYy16VlGrtaVJt2selBtOaRFmkJpbwPZJM6w6yBhammIDpGxb4iHdaB\nmSVdlPZWT/a5oeI6fZ/r8mWpFpSHwVI7n7YvpSS1dy36EwAN+Tya3ZqehTMUIu2gmG/8rGUjFESn\nmoLoGPW5PrVCN0Ouq/HT4MWYAr/Obl+Wapmp+vtwt/Fp+ziycjVLtc8jsZZoBdEiqVbMN37WshFh\nn2gNLEylRGbnMLNlwAagBBSdc3OTKEfcSq5ErkMTnoy6XE/jp8FLMQVNYVlKhcqtFVk4bR/XH5Jm\nCD+joWcGqn1+o1aODJyhEGkHzR50PJQGFqZakhHfMc651Qm+fuxKrkSHqXF/1HV2NXYa3Lng9H1c\n3Tny1VsrsnDavpRvoYGFYXeOCn2im9qdQy3RIi0hjvEzjdDAwlRTs2md8qU8j//l8f4ZOQCWr1+u\n7hzNkOuGtcvhxd/U9/zwH30cB8bOoCy9m4cfWLjkPr9ew683BnZ/dzpaflf80afDLWxOR3lqEX5G\nrz420MID/vNLojvH6wuq78cTd4SdD25emaQ9FAuw7A9Q6h1YtuOBsN3M5Mo0Gl55FLa8VfmxnQ/2\n3596lIq+/sI/uGtfSbglOogpXvvT8MlerAN2Pwq6xte+7dWL4M1FjZUvNHYKzHpXPNtqIUkF0Q6Y\nb2YOuNo5d83QFczsQuBCgFmzZjW5eCO77aXb+PqjX99m+a4Td02gNBkzfrpPs33jBxvbzrjpMZXl\nvuD2tAqPB9no4kx7/v4fwsEfim979di8Bv7zWPxXmXjqshnGTQUMHvyOvwx6rInvoWs85MbCH3/k\nL5VYJ1z2SjrSpkvreO5XcNsFg5fteTSc+6skSjM61iyF6+dVf3yfk+HsG+vb9kvz4aazBy+bdUR9\n24pDz3Y+QH7k+/4ynL/+Arzns7Vv+6cfgLUvN1a+cpc+BVP3iG97LSCpIPrdzrkVZrY9cI+ZveCc\nu798hSCwvgZg7ty5LolCDmd9fj0APz35p+RsoBp3HF/nv1+p3f/6CaxZ0tg2OnKwwwExlOXHvizW\nATvsv+3jMw+FTz4OhY2Nv1Z+A/z4FNiytvFtNVyW9YDzqb73Obnye0+jCdvDpX/atgWr2uc3WnLd\ncMkTsHFl5cefvwMe+LZPG64gWqLYGhwfPnI79EyG31yejmNGnML3OO+rsNtRgx/79Wcae7/hts+6\nASbu5G8nGRiOm+qPWZvXDL/ej04aKHuttq6F/T8AR15Sf/kAXn4I5n8++uu3gUSCaOfciuB6pZnd\nDhwG3D/8s9Kl0FfAMN4x/R2a0q7Zxk6GmYckXQpvpLKYwYzZ8bxWYbO/TkP/6nCg5PTZrdflYOoe\nQApaS7bbxV8qeeNZf52Gz1paS9gNYeahvhVzwgx4c3GyZYpbePzZft9tj7/jpjUWzIX1t/McmLRz\n/duJ05Td/WU4ue7oA9iLBd/Np9Hf0y1rBraXMU0fBWdm481sYngbmAc80+xyNKq31EtXZ5cCaGme\nNM30EQZ3rTKgsNWk6bOW1tL/3eweuG63AaxD32O5eoLJQdsuVN92mnV2R//THdfMI9WSWGVAEi3R\nOwC3B8FnDrjBOVfnCLHkFPoKdCmAkGbq6PT9ZNNwoEo6FW67y2X3R0kaNPS7mYshOVXaDHf8ydUR\nTA7adr76ttMs6tSvpSK4vnim9szwn/6mB9HOuSXAQc1+3bgVSgW6OhRES5PFkfI8DmqJHl1ZSNIj\no6O41X8vw7OknTEkp0qb8P1UOv6ECbDq3narBtERP+dw3VhmqcrAVK5VaFLjOuVLebVES/N1dqWj\nValVf2haRbX05CIjGToHfqPdG9KoNMzxJ9fVYHeOPGCDp8BsBZ0RzzjE2W0lwxlYFUTXKewTLdJU\nuZ50HKhK6s4xqjLcx1AaNDTxU6PdG9JouO4c9fQNHrTtIJttq413ynVF+23obwiJIY7JcAZWBdF1\nKvQVGNMxJuliSNZEPVCOlv7TqQqiR0WG+xhKg4YOFgsHFrrUzRRbv9EeWNiKx7Wofx6Gq8N6Xhva\nr9tQDRRE16lQ0sBCSUCjrSxx0cDC0RUeWzL4oyQN2qYlugtwgzMYtrrhupM12ge8uDXZNN/1qrsl\nOs7uHNn7099inX7S4+HXHuaA6TEk6xCJItft5xC+71vJluP1Bf5afyRHR/ij9MwvYNULI68/dU84\n8Ax/e+n98Mojgx/vmgCHfdynjQ89+RPY8DrsdyrM2Ceecsvocc5nt9y0evj1/vLMti3RAPd/y3cH\nO+is6vOTgw+uHr/WJ/pJq3D/rnT8yXWDK8Hvv1lfl4wVT7ZuS/Tql2r/bdj4RvC8GAcWvnR39Tm6\nO8fAoR/16cHbiILoOmwobKDoimwtqZVImmz7/WDhLfC7ryVdEp/SfHyLpPtuNRN2gLFT4blf+suI\nDPY9xbdG3fVPsPK5bVfZeQ7sFqQv3rgK7rjY316zFE77YWxFl1Gy9hWfja8W+582cHvGPn5qzPv/\n1d8vFeCYK6o/d/mjcPcwj6fF5FnQNX7b5TP28RlIf//1+re91/H1PzcpO+wHi+6J9tuQ64knG2PX\neJi8Gyz6H3+pZvwMmPPhxl8vRRRE12FrcKrozNlnJlwSyZwPXAOnXZV0KQIGHeoRNirGTobPLQZq\n6Mf68Pfhni8MnIbu3QwHngmnXe0fX/4Y/OhEvzxU7bakV+8Wf336dYOD5Eqs7Hs5+wT4wip/++sz\nR/68w9c5/x6f9TCtrKNyS/P+p/k/lI1uu9Uc/2U49osRnxTTMbyjEz61wM87Xcmm1fDvswf2rTai\nILoOhT7f70cDC6XpzHyrkrS/Wn/cxoz11+HI+GLBtzB1BPvJmJ7Bjw93W9Krf1q3ss+2VuH6tUz/\nFvaVHTM2+uukRauWu1FJvu/hfpvCY1QaBsXHrAX/biWvEPzoaGChiCSufxBi8ANVyg8eLNQ/cr7s\nB6zabUmvOAbz1jIwuVXTXkt6tXEGVgXRdQiD6G4dZEQkabkh00sV89sm2wiXhxREt544soTWMv1b\nnPMHi8C2f/TbiILoOqglWkRSoz/lbtidY8gUZ5VS8oa3raMtW4faUrGsO0e9akm8UorhdUTKmQVT\nD7bfsUZBdB3UJ1pEUqO8pbmvD/p6a2+J7p7Ulj9sbSmOFuIw8Uotr6NGIolT1LTkLUJBdB3UEi0i\nqdGfIrxQlo69Ukt0hcGE3ZPa8oetLcWRYa6WhBxxJuEQCeVq+APXghRE16G3z2d+6upQEC0iCSvv\nEx32iy4/FR/eLs/iFt7unqisiK1CAwulldXSlagFKYiuQz7YEdQSLSKJK0+52x8AVWiJLh9QFt7u\nmZTJVL0tqRRDC3GtAwutEzo1A67EqE37ROtbEtHarWv54kN+QnMF0SKSuPA4dN83oWc7f7s80Oro\ngI4xPoX4ymf9srXL/XX3JNi8Gm6OmEUsNxbmfQUm7thY2duRcz75zQ4HwkEfhLeWwW+/3Hi3mbeW\n+euGunN0w+tPDf95v/GcunJI/FwJFt7qz3ztdZzPvvvQfzBsQqnx28PfXtm0ItZDQXRET69+mg2F\nDUzrmcZO43dKujgiknVT94TdjoItb0FhI+x0MMycO3idA8+A1xfAm4sHlu15NBx8Nqx7dfDykRTz\nsGYx7HMiHHB6HO+gveQ3BMEBPohefK//AzNtb+hscDD63vNg7JT6nz/7xJE/71w3HPCB+l9DpJK1\nr/jrF/4bVr/kjz8v/BpmvL36c1ogw6GC6IjCQYVXH381PZoCSESS1jMJPnbn8OsMlyp+pBTSQ61Z\nAt+do24g1QxtcQ7r6fz5MG5q88tT7p3n+4tIUsZv7/+IF/Mwbhpc9HDSJWqI+kRHFPaHHtNoi4KI\nSCvqbN/sY7EY2u8zjiQpIu2ie+LATEJtMHhVQXREylYoIpnWP9uHguiKhs52EkeSFJF20TNpYCah\nNuh7ryA6Ik1vJyKZlmvfFL6x2KY7R95nhtRsFyJBgqdCkFlVQXTmKNGKiGSaunMMr1J3Dp25FPG6\nJ/rvRKnQFl2cFERHpJTfIpJp4XgQDSysrNLAwkZSdYu0kzBLqrpzZJMSrYhIppnVlvkuq9QSLVJd\n90R/Xdiklugs6i310mmd5DrUv01EMirXo5boasr/XPT1BS3RGlQoAviBheDnU2+D74WC6IgKpYJa\noUUk23JdaomupvzPRang60ndOUS87iCI3rq+LbpzqDk1otsW3UaH6b+HiGRYrgeevgUW/TaZ1z/8\nIjj875N57aHeXAw3nQO9m/398Brge+/0adWn7JFM2UTSomuCz6gadufY+EZbdOdQEB1RznKMyWlQ\noYhk2Hs+By8/lMxrv3Q3LL0vPUH0G8/Cqud9Su2eyX5Zfj30bAfO+ft7HZtc+UTS4OO/89/bvY6D\nQ871Z2zmnJN0qRqmIDqiYl+Rk/c8OeliiIgk59Dz/CUJ/3nstglNkhQOJDz+KzBjdrJlEUmrGbMH\nvh+n/EeyZYmR+iVEVOgrKNGKiEhSct3pGtQY9g1vg/6dIhKNgugInHMUSgXGdKo7h4hIInIpm16v\nqCBaJKsUREdQdEUcTi3RIiJJ6exOV8rxMLlKGwySEpFoFERH0FvqBZRoRUQkMbmudAXRaokWySwF\n0REUghYHBdEiIglJW7bE/pZoBdEiWaMgOoJCn4JoEZFE5brSNbCwmAfrhE5NdiWSNQqiI8gHrR/q\nEy0ikpC0tUQXt6orh0hG6a9zDZxzbOrdxPr8ekAt0SIiicl1Q+9Wnza4UWYDGdTqUdjks7DpN0Ek\nkxRE1+AHC37AVQuu6r8/Njc2wdKIiGRY13jo3QTf2DWe7Z30LXjXJ6I/7/n/gps/7G9PmhlPWUSk\npSiIrsHL615mSvcUzj/wfMbmxnL4TocnXSQRkWx65wUwdiq4vsa3de9X4c3F9T13zRJ/fewXYZe5\njZdFRFqOgugaFPoKTBs7jfP2TyjNrYiIeBN3hCMuimdbD36n/v7V4eDGIy8BJeASySQNLKxBoVRQ\nP2gRkXbTSArxUh4w6FBblEhWKYiuQaGvoBk5RETaTWeXn12jHuGsHGbxlklEWoaC6Br0lnrVgoVY\nrQAACwlJREFUEi0i0m5y3QPJUqIqFpRgRSTjFETXIF/KK4gWEWk3ue76U4iX8pofWiTjFETXQN05\nRETaUCOJW4oFBdEiGZdIEG1mJ5rZi2a2yMwuS6IMUag7h4hIG8p11d8SXdyqJCsiGdf0INrMOoHv\nAycB+wFnm9l+zS5HFJqdQ0SkDXU20p1DLdEiWZfE3DyHAYucc0sAzOwm4FTguQTKUtXqLatZum4p\nAJuKmxREi4i0m1w3bHkLlj0Q/bkb/qIgWiTjkgiiZwLLy+6/CrwrgXIM6+HXHuaKB67ovz+5e3KC\npRERkdiNmwprX4b/+zf1Pf9tx8ZbHhFpKamdJd7MLgQuBJg1a1bTX/+InY/gunnXhWXhgOkHNL0M\nIiIyiuZ9DQ48s/7nb5/qnogiMsqSCKJXALuW3d8lWDaIc+4a4BqAuXPnuuYUbcD0sdOZPnZ6s19W\nRESapWcS7PGepEshIi0qidk5Hgf2NrM9zKwLOAu4I4FyiIiIiIjUpekt0c65opldDNwNdALXO+ee\nbXY5RERERETqlUifaOfcncCdSby2iIiIiEijlLFQRERERCQiBdEiIiIiIhEpiBYRERERiUhBtIiI\niIhIRAqiRUREREQiUhAtIiIiIhKRgmgRERERkYgURIuIiIiIRKQgWkREREQkIgXRIiIiIiIRKYgW\nEREREYlIQbSIiIiISETmnEu6DCMys1XAywm89HRgdQKv26pUX9GpzqJRfUWj+opG9RWN6isa1Vc0\nSdbXbs65GSOt1BJBdFLM7Ann3Nyky9EqVF/Rqc6iUX1Fo/qKRvUVjeorGtVXNK1QX+rOISIiIiIS\nkYJoEREREZGIFEQP75qkC9BiVF/Rqc6iUX1Fo/qKRvUVjeorGtVXNKmvL/WJFhERERGJSC3RIiIi\nIiIRZTaINrMTzexFM1tkZpdVeLzbzG4OHn/UzHYve+zyYPmLZnZCM8udlBrq6x/N7Dkze9rMfmtm\nu5U9VjKzp4LLHc0teTJqqK+Pmtmqsnq5oOyx88zspeByXnNLnowa6uvbZXX1ZzNbW/ZYFvev681s\npZk9U+VxM7PvBvX5tJkdUvZYFvevkerrnKCeFprZQ2Z2UNljy4LlT5nZE80rdXJqqK+jzWxd2ffu\nX8oeG/a73I5qqK/PldXVM8Exa2rwWBb3r13N7HdBzPCsmX2qwjqtcQxzzmXuAnQCi4E9gS5gAbDf\nkHUuAq4Kbp8F3Bzc3i9YvxvYI9hOZ9LvKQX1dQwwLrj9D2F9Bfc3Jv0eUlhfHwW+V+G5U4ElwfWU\n4PaUpN9T0vU1ZP1LgOvL7mdq/wre83uAQ4Bnqjx+MnAXYMDhwKPB8sztXzXW15FhPQAnhfUV3F8G\nTE/6PaSsvo4Gfl1heaTvcrtcRqqvIeu+D7i37H4W96+dgEOC2xOBP1f4jWyJY1hWW6IPAxY555Y4\n5wrATcCpQ9Y5Ffh/we2fA8eamQXLb3LO5Z1zS4FFwfba2Yj15Zz7nXNuc3D3EWCXJpcxTWrZv6o5\nAbjHObfGOfcWcA9w4iiVMy2i1tfZwI1NKVlKOefuB9YMs8qpwI+d9wgw2cx2Ipv714j15Zx7KKgP\n0PGrlv2rmkaOfS0rYn3p+OXc6865J4PbG4DngZlDVmuJY1hWg+iZwPKy+6+y7QfYv45zrgisA6bV\n+Nx2E/U9n4//BxnqMbMnzOwRM3v/aBQwZWqtr9OD01Q/N7NdIz63ndT8noNuQnsA95Ytztr+VYtq\ndZrF/SuqoccvB8w3sz+a2YUJlSmNjjCzBWZ2l5ntHyzT/jUMMxuHD/h+UbY40/uX+a6yc4BHhzzU\nEsewXFIvLO3JzD4MzAXeW7Z4N+fcCjPbE7jXzBY65xYnU8LU+C/gRudc3sw+gT/r8dcJl6kVnAX8\n3DlXKlum/UtiYWbH4IPod5ctfnewf20P3GNmLwQtj1n2JP57t9HMTgZ+CeydcJlawfuAB51z5a3W\nmd2/zGwC/g/Fp51z65MuTz2y2hK9Ati17P4uwbKK65hZDtgOeLPG57abmt6zmR0HfB44xTmXD5c7\n51YE10uA3+P/dbazEevLOfdmWR1dCxxa63PbUJT3fBZDToVmcP+qRbU6zeL+VRMzewf+u3iqc+7N\ncHnZ/rUSuJ327743IufceufcxuD2ncAYM5uO9q+RDHf8ytT+ZWZj8AH0z5xzt1VYpSWOYVkNoh8H\n9jazPcysC79jDx3VfwcQjvo8Az8QwAXLzzI/e8ce+H/fjzWp3EkZsb7MbA5wNT6AXlm2fIqZdQe3\npwNHAc81reTJqKW+diq7ewq+TxjA3cC8oN6mAPOCZe2slu8jZvZ2/ECSh8uWZXH/qsUdwLnBCPfD\ngXXOudfJ5v41IjObBdwGfMQ59+ey5ePNbGJ4G19fFWdgyBIz2zEYI4SZHYaPJd6kxu9yFpnZdvgz\ntL8qW5bJ/SvYd64DnnfOXVlltZY4hmWyO4dzrmhmF+MrvhM/0v9ZM/sy8IRz7g78B/wTM1uEHzBw\nVvDcZ83sFvwPdRH45JBTy22nxvr6V2ACcGtwbH3FOXcKsC9wtZn14Q+033DOtXWQU2N9XWpmp+D3\noTX42Tpwzq0xs6/gf4wAvjzk1F/bqbG+wH8Hbwr+zIYyt38BmNmN+BkSppvZq8AXgTEAzrmrgDvx\no9sXAZuBjwWPZW7/gprq61/wY15+EBy/is65ucAOwO3Bshxwg3PuN01/A01WQ32dAfyDmRWBLcBZ\nwfey4nc5gbfQVDXUF8BpwHzn3Kayp2Zy/8I3dnwEWGhmTwXLrgBmQWsdw5SxUEREREQkoqx25xAR\nERERqZuCaBERERGRiBREi4iIiIhEpCBaRERERCQiBdEiIiIiIhEpiBYRERERiSiT80SLiCTFzKYB\nvw3u7giUgFXB/c3OuSNH4TXnABc7586PaXsX48t6fRzbExFpRZonWkQkIWb2v4GNzrl/G+XXuRX4\nqnNuQUzbGwc86JxTinURySx15xARSQkz2xhcH21m95nZr8xsiZl9w8zOMbPHzGyhmb0tWG+Gmf3C\nzB4PLkdV2OZE4B1hAG1m7zWzp4LLn8rSDn8u2MbTZvalsuefGyxbYGY/AXDObQaWBSmfRUQySd05\nRETS6SB8WvM1wBLgWufcYWb2KeAS4NPAd4BvO+ceMLNZ+HTL+w7ZzlzgmbL7nwU+6Zx70MwmAFvN\nbB6wN3AYYMAdZvYe4E3gn4EjnXOrzWxq2XaeAP4KeCzWdy0i0iIURIuIpNPjzrnXAcxsMTA/WL4Q\nOCa4fRywn5mFz5lkZhOccxvLtrMTA32uAR4ErjSznwG3OedeDYLoecCfgnUm4IPqg4BbnXOrAZxz\na8q2sxJ4e+NvU0SkNSmIFhFJp3zZ7b6y+30MHLs7gMOdc1uH2c4WoCe845z7hpn9N3Ay8KCZnYBv\nff4/zrmry59oZpcMs92eYNsiIpmkPtEiIq1rPr5rBwBmdnCFdZ4H9ipb523OuYXOuW8Cj+Nbk+8G\n/i7o3oGZzTSz7YF7gTODGUUY0p1jNoO7iYiIZIqCaBGR1nUpMDcY+Pcc8PdDV3DOvQBsFw4gBD5t\nZs+Y2dNAL3CXc24+cAPwsJktBH4OTHTOPQt8DbjPzBYAV5Zt+ijgnlF7ZyIiKacp7kRE2pyZfQbY\n4Jy7NqbtzQH+0Tn3kTi2JyLSitQSLSLS/n7I4D7WjZoOfCHG7YmItBy1RIuIiIiIRKSWaBERERGR\niBREi4iIiIhEpCBaRERERCQiBdEiIiIiIhEpiBYRERERiej/Axv0GJoQZ5YmAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7f5b2c108a10>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "%matplotlib inline\n",
    "import matplotlib.pyplot as plt\n",
    "plt.figure(figsize=(12,7))\n",
    "# Plot number of molecules of 'molA' over the time range:\n",
    "plt.plot(tpnt, res[:,0], label = 'A')\n",
    "# Plot number of molecules of 'molB' over the time range:\n",
    "plt.plot(tpnt, res[:,1], label = 'B')\n",
    "# Plot number of molecules of 'molC' over the time range:\n",
    "plt.plot(tpnt, res[:,2], label = 'C')\n",
    "plt.xlabel('Time (sec)')\n",
    "plt.ylabel('#molecules')\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If we're using a stochastic simulation algorithm such as that implemented in\n",
    "solver `Wmdirect`, we're usually interested in analysing the range of behaviours\n",
    "produced by different iterations. One way of doing that is by taking the mean\n",
    "over multiple iterations (100 in this example), as is shown in the following\n",
    "simulation code. We plot the average of multiple (n = 100) iterations of our second order reaction."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.legend.Legend at 0x7f5aef70cfd0>"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAGtCAYAAADQwSggAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4nNWd/v/3mdFIM+q9WdVykQu2cbepppsSBxICJKGF\nEpJsErJJlrDf3U37pWxgk91Ndgm9BAIJsEDoBmyDTXFvcu+2eu8aacr5/SFb2MFFtmc0kn2/rmuu\nkWae55yPxkLcc+Y85xhrLSIiIiIi0n+OSBcgIiIiIjLUKESLiIiIiBwnhWgRERERkeOkEC0iIiIi\ncpwUokVEREREjpNCtIiIiIjIcVKIFhERERE5TgrRIiIiIiLHSSFaREREROQ4RUW6gP5IT0+3RUVF\nkS5DRERERE5xK1eurLfWZhzruCERoouKilixYkWkyxARERGRU5wxZk9/jtN0DhERERGR46QQLSIi\nIiJynBSiRURERESO05CYEy0iIiIiQ4PP56O8vByv1xvpUo7K7XaTl5eHy+U6ofMVokVEREQkZMrL\ny0lISKCoqAhjTKTLOSxrLQ0NDZSXl1NcXHxCbWg6h4iIiIiEjNfrJS0tbdAGaABjDGlpaSc1Wq4Q\nLSIiIiIhNZgD9AEnW6NCtIiIiIjIcVKIFhEREZFTzssvv4wxhs2bN4elfYVoERERETnlPPvss5x9\n9tk8++yzYWlfIVpERERETint7e0sWbKERx99lOeeey4sfWiJOxEREREJi5++uoGNla0hbXNsbiI/\nvmrcUY955ZVXuOyyyxg1ahRpaWmsXLmSKVOmhLQOjUSLiIiIyCnl2Wef5frrrwfg+uuvD8uUDo1E\ni4iIiEhYHGvEOBwaGxtZsGAB69evxxhDIBDAGMN9990X0qX3NBJ9BG1eH2UVLfgCwUiXIiIiIiL9\n9MILL3DjjTeyZ88edu/ezb59+yguLmbx4sUh7Uch+gjeLKvmyt8voap5cO/7LiIiIiKfevbZZ7n6\n6qsPeewLX/hCyKd0aDrHEWQlugGobfNSkBYb4WpEREREpD8WLlz4mce+853vhLwfjUQfQWZCDAA1\nrd0RrkREREREBhuF6CM4MBJd06rpHCIiIiJyKIXoI0iJdeFxOSlv6op0KSIiIiIyyChEH4ExhoLU\nWPY2dkS6FBEREREZZBSij6I4PY6d9QrRIiIiInIoheijGJEZz56GTnr8WitaRERERD6lEH0Uxelx\nBIKWimbNixYREREZKpxOJ5MmTWLixIlMnjyZjz76KOR9aJ3oo8hP7V0fem9jJ8XpcRGuRkRERET6\nw+PxsGbNGgDefvtt7r33Xt5///2Q9qGR6KMoOChEi4iIiMjQ09raSkpKSsjb1Uj0UWQmxBAd5aBc\nIVpERETk+L35I6heH9o2s8+Aub8+6iFdXV1MmjQJr9dLVVUVCxYsCG0NKEQflcPRu8zdjrr2SJci\nIiIiIv108HSOjz/+mJtuuomysjKMMSHrQyH6GCYMS2Lx9vpIlyEiIiIy9BxjxHggzJo1i/r6eurq\n6sjMzAxZu2GbE22McRtjlhlj1hpjNhhjfrr/8WJjzFJjzHZjzF+MMdHhqiEUxuYmUtfWTWNHT6RL\nEREREZHjtHnzZgKBAGlpaSFtN5wj0d3ABdbadmOMC1hijHkT+Efgd9ba54wxfwRuAx4IYx0nZWRW\nAgBba9qYOTy0L76IiIiIhN6BOdEA1lqefPJJnE5nSPsIW4i21lrgwGRi1/6bBS4Avrz/8SeBnzCI\nQ/SorHgAttW2K0SLiIiIDAGBQCDsfYR1iTtjjNMYswaoBd4BdgDN1lr//kPKgWFHOPdOY8wKY8yK\nurq6cJZ5VNmJbhJiothW0xaxGkRERERkcAlriLbWBqy1k4A8YDpQehznPmStnWqtnZqRkRG2Go/F\nGMOIrHi21WiFDhERERHpNSCbrVhrm4GFwCwg2RhzYBpJHlAxEDWcjFGZCWypaaN3hoqIiIiInO7C\nuTpHhjEmef/XHuBiYBO9YfqL+w+7GXglXDWESmlOAo0dPdS2dUe6FBEREREZBMI5Ep0DLDTGrAOW\nA+9Ya18D7gH+0RizHUgDHg1jDSExMrN3hY5d9R0RrkREREREBoNwrs6xDjjzMI/vpHd+9JAxLMUD\nQHlTV4QrEREREZHBYEDmRA91ucluACoUokVEREQGverqaq6//npKSkqYMmUKl19+OVu3bg1pH9r2\nux9iopxkJsRQ3tQZ6VJERERE5CistVx99dXcfPPNPPfccwCsXbuWmpoaRo0aFbJ+FKL7KS/Fwz6F\naBEREZFBbeHChbhcLu66666+xyZOnBjyfhSi+6k4PZ73t0Zu0xcRERGRoebfl/07mxs3h7TN0tRS\n7pl+zxGfLysrY8qUKSHt83A0J7qfxuYmUt/eTZ2WuRMRERE57Wkkup/G5PQuc7epqpWMhMjtoCgi\nIiIyVBxtxDhcxo0bxwsvvBD2fjQS3U/jcpIAKKtsiXAlIiIiInIkF1xwAd3d3Tz00EN9j61bt47F\nixeHtB+F6H5KinVRmBbL+nKFaBEREZHByhjDSy+9xLvvvktJSQnjxo3j3nvvJTs7O6T9aDrHcThj\nWBKr9zZHugwREREROYrc3Fz++te/hrUPjUQfhzE5iVQ0d9HR7Y90KSIiIiISQQrRx+HAzoU1rd4I\nVyIiIiIikaQQfRyyEntDdLVCtIiIiMgRWWsjXcIxnWyNCtHHoTg9DoDtte0RrkRERERkcHK73TQ0\nNAzqIG2tpaGhAbfbfcJt6MLC45Cd6CY9Poa1+1pgVqSrERERERl88vLyKC8vp65ucO/07Ha7ycvL\nO+HzFaKPgzGGiXlJrC3XCh0iIiIih+NyuSguLo50GWGn6RzHaUJeMjvq2mnXCh0iIiIipy2F6OM0\nIT8Ja2GdRqNFRERETlsK0cdpUl4yQO+8aBERERE5LSlEH6eUuGiGJXvYXN0a6VJEREREJEIUok/A\nyKx4ttZomTsRERGR05VC9AkYlZXAjrp2/IFgpEsRERERkQhQiD4Bo7IS6PEH2d3QEelSRERERCQC\nFKJPwIS8JADW6OJCERERkdOSQvQJKMmIJy7ayZp9TZEuRUREREQiQCH6BDgdhgl5yVrmTkREROQ0\npRB9giYVJLOpqhWvLxDpUkRERERkgClEn6DS7AT8Qcuehs5IlyIiIiIiA0wh+gSVZMQDsLNO60WL\niIiInG4Uok9QcXocADsUokVEREROOwrRJyguJoqcJDfbahWiRURERE43CtEnYVJ+Mit2a5k7ERER\nkdONQvRJmFyQQkVzF00dPZEuRUREREQGkEL0SRidnQDA5uq2CFciIiIiIgNJIfoklO4P0VuqWyNc\niYiIiIgMJIXok5CREENKrIstNRqJFhERETmdKESfBGMMo7MTNJ1DRERE5DSjEH2SSrMT2VrdRjBo\nI12KiIiIiAwQheiTNDo7gY6eABXNXZEuRUREREQGiEL0SdIKHSIiIiKnH4XokzQqa3+IrtIKHSIi\nIiKnC4XokxQfE0V+qofNWqFDRERE5LShEB0Co7MS2aLpHCIiIiKnDYXoECjNTmBXfQfd/kCkSxER\nERGRAaAQHQKjsxMIBC3ba9sjXYqIiIiIDACF6BA4sP33pipN6RARERE5HYQtRBtj8o0xC40xG40x\nG4wx393/+E+MMRXGmDX7b5eHq4aBMjwjngR3FCv3NEW6FBEREREZAFFhbNsPfN9au8oYkwCsNMa8\ns/+531lr7w9j3wPK6TBMK0pl6a6GSJciIiIiIgMgbCPR1toqa+2q/V+3AZuAYeHqL9JmFKeys66D\nurbuSJciIiIiImE2IHOijTFFwJnA0v0P/YMxZp0x5jFjTMpA1BBu04tTAVixuzHClYiIiIhIuIU9\nRBtj4oEXgbutta3AA0AJMAmoAv7jCOfdaYxZYYxZUVdXF+4yT9qYnESiHIb1FS2RLkVEREREwiys\nIdoY46I3QD9jrf0/AGttjbU2YK0NAg8D0w93rrX2IWvtVGvt1IyMjHCWGRJul5ORWQkK0SIiIiKn\ngXCuzmGAR4FN1trfHvR4zkGHXQ2UhauGgTZhWBLrK1oIBm2kSxERERGRMArnSPRZwI3ABX+3nN1v\njDHrjTHrgDnA98JYw4CaXpxKc6ePTdWtkS5FRERERMIobEvcWWuXAOYwT70Rrj4jbfaINAA+3tHA\nuNykCFcjIiIiIuGiHQtDKCfJw/D0OD7cXh/pUkREREQkjBSiQ2z2iDSW7WrEFwhGuhQRERERCROF\n6BA7qySdjp4Aa/c1R7oUEREREQkThegQm1WSRpTDMH9jTaRLEREREZEwUYgOseTYaM4dlcH8DdWR\nLkVEREREwkQhOgxml6Sxu6GTqpauSJciIiIiImGgEB0Gs0p6l7r7ZGdDhCsRERERkXBQiA6DMdmJ\nJHlcPPTBLqzV7oUiIiIipxqF6DBwOAw3TC9gU1Ur5U2a0iEiIiJyqlGIDpOrJuYAsHJPU4QrERER\nEZFQU4gOk9LsRBJiovhoh3YvFBERETnVKESHidNhmFOayTsba/Br90IRERGRU4pCdBhdfkY2TZ0+\nlu5qjHQpIiIiIhJCCtFhdP7oTGKjnby+virSpYiIiIhICClEh5Hb5WROaSZvl1VrSoeIiIjIKUQh\nOsw+P2kYDR09vLupJtKliIiIiEiIKESH2QWlmaTFRfPG+upIlyIiIiIiIaIQHWZOh+GC0kwWbq6l\nqycQ6XJEREREJAQUogfAF6fk0dbt5w1dYCgiIiJySlCIHgDTilLJTIjh/a11kS5FREREREJAIXoA\nOByGKYUpfLSjgc4ef6TLEREREZGTpBA9QL4wOY/69m4WbdFotIiIiMhQpxB9NNb23kLgvNEZJLij\ntPGKiIiIyClAIfpI1j0Pv8iB1sqQNOdyOvjC5Dze2VhDR7emdIiIiIgMZQrRRxITD/4uaA/d+s6X\njc+mxx/UBYYiIiIiQ5xC9JHEZ/Xet4UuRE8tTCE1Lpq3N2jjFREREZGhTCH6SBKye+/bQjeHOcrp\n4MLSTBZsrqXHHwxZuyIiIiIysBSijyQ+CxwuaCkPabOXjsumzevnyY92h7RdERERERk4CtFH4nBC\ncj407Q5ps+eNzqA0O4GHF++kusUb0rZFREREZGAoRB9N6nBo2B7SJl1OB7+65gzau/38y8tlIW1b\nRERERAaGQvTRZJRC/TYIBkLa7JkFKdw4q5B3N9WwvbYtpG2LiIiISPgpRB9N2gjwe0N6ceEBX5le\nCMD/LtoR8rZFREREJLwUoo8mpTfohnpeNEBBWiw3TM/ntXVVNHb0hLx9EREREQkfheijSSnqvQ9D\niAb4yoxCevxBXl0bml0RRURERGRgKEQfTVI+GEfYQvS43ESmFaVw39tbWLKtPix9iIiIiEjoKUQf\njdMFSXnQuDMszRtj+M0XJ5Ic6+KfXlhLS5cvLP2IiIiISGgpRB9L9gSoXB225ovT4/jP6yZR2eLl\nuWV7w9aPiIiIiISOQvSx5EzqHYnubg9bF1OLUhmdlcCS7ZrSISIiIjIUKEQfS2Zp7339lrB2c/7o\nDJZsr2fZrsaw9iMiIiIiJ08h+lgyxvTe14U3RH/j/BKSPC4eW7IrrP2IiIiIyMlTiD6WlCJwRkPt\nprB2kxwbzecnDeOtDdX8YcG2sPYlIiIiIidHIfpYnFGQPirsI9EAt51dDMD987fiDwTD3p+IiIiI\nnBiF6P7IGB32kWiA/NRY/vjVyQC8vj70W42LiIiISGgoRPdH1jho2QtdzWHv6pKx2RSlxfLUx3vC\n3peIiIiInBiF6P7IHNt7Xx/+ucoOh+GrMwtZuaeJzdWtYe9PRERERI6fQnR/JBf23rcMzGYo10zO\nIybKwX+/pwsMRURERAajsIVoY0y+MWahMWajMWaDMea7+x9PNca8Y4zZtv8+JVw1hExyfu9988CE\n6NS4aL5+7nDeWF/NvsbOAelTRERERPovnCPRfuD71tqxwEzgW8aYscCPgPestSOB9/Z/P7jFJIAn\nZcBCNMAXpuQB8FZZ9YD1KSIiIiL9E7YQba2tstau2v91G7AJGAbMA57cf9iTwOfDVUNIJRdA874B\n664wLY5xuYn8YeF2Orr9A9aviIiIiBzbgMyJNsYUAWcCS4Esa+2B9duqgayBqOGkpRRDw8DOUb5h\negEtXT7uezv8a1SLiIiISP+FPUQbY+KBF4G7rbWHLDdhrbWAPcJ5dxpjVhhjVtTV1YW7zGPLHg9N\nu8E7cCtmfHVmIVdOyOGvK/ZR2+odsH5FRERE5OjCGqKNMS56A/Qz1tr/2/9wjTEmZ//zOUDt4c61\n1j5krZ1qrZ2akZERzjL7J+uM3vvajQPa7Y0zC+nsCXDTY8vofc8hIiIiIpEWztU5DPAosMla+9uD\nnvobcPP+r28GXglXDSGVvT9EV60b0G5nDE/j3rmlbK5uY215y4D2LSIiIiKHF86R6LOAG4ELjDFr\n9t8uB34NXGyM2QZctP/7wS8xF+IyoHL1gHd9w4wCYqIc3PPCOoJBjUaLiIiIRFpUuBq21i4BzBGe\nvjBc/YaNMZA7GSpXDXjXiW4XV07I5cVV5by/rY45ozMHvAYRERER+ZR2LDweOROhbgv4uwe8619d\ncwYZCTE8+dHuAe9bRERERA6lEH08kvMBC20DvwFKdJSDr84oZNGWOt7ZWDPg/YuIiIjIp8I2neOU\nlJjbe99WBSmFA979N+eU8MraCu54agXv//B8CtPiBrwGEQmNnS07KUgoIMrx6Z/hQDBAl7+LOFcc\nW5u28u7ed/FEeShMKMTpcJLmTqMkuQRPlAeLxWE+Ow5yoI346PiB/HFERE47CtHHI3l/cG7cCQUz\nB7x7l9PBb780ic//z4c8v6KcH1w6esBrEJHj0x3o5pH1j+AL+IhxxrCkcgnr6j5d5SclJoVRqaPw\nBXxsbNiIN9D/NeEzPZmcmXUm49PGEyTIx5Ufs6N5B+2+du6ccCc3j70Zl9N12HODNnjYEA7gD/op\nqy8jNz6XzNiheQ3GvrZ9YCE/MR8Aay2tPa3sbd1LaVopTd4m1tat5ZXtr1DRXsF5eecxb8Q8AFLd\nqSTFJEWyfBEZAsxQWHt46tSpdsWKFZEuA4JB+HUBTLwerrg/YmV87YnlLNvVyGvfPpuidI1Gi/y9\nTl8nL29/mQsKLiA7LvuQ5xq9jaTEpNDc3Ux7T3tfyILeYGkw9K7QeWzWWhbsW8AH5R9wRfEVjEsf\nhyfKwyvbX2Fv2172tu5l0b5F9AR7+s5JiE5gbNpYajpqyIzNJDsum1U1q0jzpFGcVEx3oJvGrkZK\nU0u5qPAiuvxdNHgbyI7Npqy+jA0NG6hsryQ/MZ/2nnbeL3+/r+0YZwxTsqawo3kHNZ01xDhjuKTw\nEhJjEomNiiXdk878PfOpaK+g2dvMdaOvY3z6eN7b+x75Cflsa9qGL+hjU+MmGr2NAIxOGU1CdAIl\nySW4HC42N26mJ9hDblwuP5r+I5JjknE6nNR11uENeMlPyP/Ma7S5cTPLqpfhcrjwRHkoqy/DG/By\n54Q7iXPF4Qv48AV9tPa0UpxUTJwrjqAN4g/6qemsYWvjVrY0bcFgSIpJIsWdQowzBrfTTXZ8NrFR\nsaytW0tsVCwfVX7EX7b8BV/QB/QG4jhXHI3eRjp8HQDEueL6vo52RB/y73Pgdbxi+BX8aPqP8ER5\n+vW7cLL8QT9VHVU0ehvJ9GSSE58zIP2eiJqOGtxRbhKiE9jUsIk1dWsYFj+M8enjeXHri1gsI1NG\nMjVrqt6MyGcc+JuwrXkbhYmFTEif0O+/uQPFGLPSWjv1mMcpRB+nJ64EXyfcsSBiJVQ0d3HB/Yu4\nblo+P5s3PmJ1iERa0Ab5v23/x2s7XyMxOpGpWVOp6qjird1vUd9VD0CCK4FZubO4Y8IdPLL+Ed7e\n/TYjkkdQ01FDm6+NMaljyI3PZWPDRtp72hmRMoK5xXP5sOJD1tatpSixiNnDZpMXn0dNZw1N3ibG\npo1lWfUy3tr1Fp3+ziPWl+ZOozCxkJvH3Ux1RzWTMicxJnVMSP+Hsad1D0nRSbT0tJAZm9kX+q75\n2zVsa9pGlInCb/2HnJPhySAvIY/VtZ9dsjM3Lpdx6eOYnj2dlTUr2d26m05fJzWdNQRtkMzYTLJi\ns1hV++lKRYnRibT2tOIwDi4uvJgdzTvo8ndRmlpKeVs5W5q2HNKHJ8qDP+jvC7oHi3JEkROXQ31X\nPV3+rhN6TTJjM5mTP4fipGLK6sto8jYR54rDYkl1p+IP+smJyyExJpErhl+BtZaPKz8maIP0BHt4\nfuvzrKtbx9i0sYxJHQPADaU34Iny8PL2l2ntaeWs3LM4P//8k/q3bOlu4fmtz7O8ejnr69fT1tPW\n91ycK45rRl5DqjuVlTUrqWyvpCCxgLGpY5mcNRmzf/Grms4aLii4gDhX/wdU6rvqaetpoyixiAZv\nAy6Hi4ANEBsVizvK3XdcIBhgadVSKjoqeGbjM1R2VJIZm8me1j2HbddgsAdtQhwbFcu07GmkuFNY\nV7eOVHcqHb4O3FFukmOSmZAxgZy4HKZkTSHdk053oJuNDRspbytnTv4cart692LLis1SGI8Ar99L\nk7eJ1bWrKUwsZFz6OAB8AR8vbnuR6o5qLiy4kGhnNM9vfZ6pWVOp7aylJ9iDJ8pDVmwWEzMmkuJO\nYWvTVjY1bGJv217m755PeXt5Xz8XFVzExIyJ7GzZSZwrjszYTEanjsYT5eHMzDMj8rMrRIfL/H+F\npX+EeysgKjpiZXz72dV8sLWO+d87l6xE97FPEBnCdjbvpMHbQF58Huvq17GpYRMO42Bny07e2/se\nCdEJfQHEYRyMSB7BOcPOYWfLTlbXrqa5u7mvrdm5s+kOdOOJ8jAlawpPbHiClu7ejYzy4vP6/rjH\nOGM4I/0MvH4vZQ1lh61rZs5MChMLuXbUtaysWcnrO19ne/N2bhl/CzePvZlYV2yYX5kjq++qpyfQ\nQ258Ls3eZtbWrSXdk052XDYp7hQMhvfL36e8rZzz8s8DegO00+E8YpsH/n9hjOG1na/x1q63aO5u\nJj46nkkZk9jSuIVVtato7WnFH+wN7jHOGO6aeBfzSubRHeimprOGM9LPoKajhg8qPsBpnEQ7o3E5\nXJS3l1PfWU99Vz0el4fE6ERKU0uJc8XhdrqZnDUZr99La08rle2VVLZXYoyhoauBvIQ88hPySfek\nk5eQd1KvXdAGeXrj07yy4xW2Nm094nGfK/kcPz/r57R2t1LfVU9CdAJN3U2sq1vHJ1WfUNdZx1nD\nesP23ta9TMuexpamLext7f2UYsG+Bb3TTva/9snuZHLickiOSebNXW/SE+jpewPkcrhwR7kPCdoH\n80R5uLToUlLcKUSZKIqSioh2RLOrdRfxrngyYzPxB/28u+ddFu1bhN/6+0bkHcZB0AaJMlHEumIp\nSCigNK2UBXsX9H0iAVCSVEJlRyWXF19OQWIBle2V5MXnMSNnBpXtlSyvWc68knkkxiSyqmYVr2x/\nhaXVSwEYFj8MgDRPGtZa1tev7/e/hyfKw2VFl/GVMV9hdOqn0xh9AR91XXXkxuf2uy05Mn/Qz4aG\nDQxPGs7D6x/mibInDnlTdMu4W6jpqOHDyg9p7Wk9oT6iTBQzcmdwVu5ZfFjxIVUdVext24s/6Mdg\ncBpn3+98pieTN77wBjHOmJD8fMdDITpcNrwEz9/SOxI9bErkyqhs4QsPfMTkghT+fMfAz88WOVGB\nYACLPeSCumZvM89teY4Pyj9gX9s+rhx+JRcVXsTy6uUsrVrKiprD//cfZaK4euTV3DvjXnwBH2/u\nepPJWZMpTio+5LgDgS02KpbLiy//zOjhlsYtZMVmkexOZl3dOjY3bubzIz5PtLP3jXJrTytldb1T\nENp97WR4MsjwZDAiZUSIX51Thy/gY2/bXoqTio8493ooqOmoYXfrbjY3bsYX9HFp0aUkRidy/4r7\neXn7yziNk6ANHhI2oDcAZMZmHvENWIwzhrz4PH4040dMyph0yAjwAV6/l4r2CjJjMwkEAyTFJFHe\nXs7CvQuxWIqTinE73Tyw9oEj/jfy91JiUriw8EL8QT+dvk7GpI1ha+NW6r315Mbl0uhtpLazli1N\nW5icOZm5xXPJis2iJLmEgsSC4379Gr2NrKpZxZz8OYe8Qavvqmdb0zaWVy9nVe0q3FFu6jrrGJ8+\nnpk5M9nSuIWS5BJinDG8vP1lFlcsBnqnQ41IHkFbTxtVHVV0+DrIjsvm2lHX9o1oJ0Un0eHvIDcu\nN+zTBHxBH+vr1jMhY8Ihf9MOsNbSHeg+7L/vwYI2yKaGTUDvpzEjkkcc9Q1tT6CHlu4WllcvJyYq\nhjhXHP6gn3RPOiOTR1LeXs4r218hPyEfp8PJ3KK5uJwufMHeay+Kk4qp6ahhS9MWPE4PL257kY8q\nPyJgA319XFhwIecMO4eADfDy9pf73vhMzpzMreNvZXz6eJ7e+DQJ0QnkxufS4eugNLWUkSkj6fR1\nsr5+PbtadvHC1hc4P/98xqaNZXbu7M98qnBgalVsVCw9wR7qOut4d8+7zMiZwZi0Mf37hwgxhehw\nad4L/3kGXH4/TL8joqX8z8Lt3Pf2Fhb+4HyKNTdaBol9bfsIBAOkedJYU7uGN3e9SV1XHQbDlqYt\nfSNbM7JnkOZJY23dWiraK4De0ba//4g/Oy6bq4ZfRVFSEe097aR70hmeNJzc+NyIjvTK6c1ay+u7\nXmdjw0YSohMoSiyiracNr9/LOXnnUJRYhDGGus46Pqz8kJqOGpq7m5mYOZFRKaMoSiwK+ZuLRm8j\nQRskzhXH6prVxLpiGZ06mp5AT98FpzNzZva9OTya1p5WElwJg2au6praNfx585+Zv3s+0c5oihKL\n8ER5cBgHa2rXELCBz7yRmZAxgXkl80iOScYf9DMiZQQjkkewt3UvHf4OWrwtxLpicTldjE0dS3VH\nNVlxWTiMg5buFjY1bqKsvozx6eNxO91MzJjY93p0+jp5etPTPLf5Oeq66piYMZG8hDwauhpo6W6h\ny99Fa0+VqIJ8AAAgAElEQVQr1lraetoYkzaG4qRiRqWMYlPjJjp9nXQHuunyd7GjeQe+oO+Q6Uue\nKA9O4+Siwov4cumXGZM2Bl/Qx4rqFby39z3+suUvx/0aJsUk0drd+pnXCcDtdHN+/vnkJ+RT21nL\nmLQxXDf6ur43BtZaGrwNJMckH/bNwqlGITpcrIX7SqD0Cvjc7yNaSkVzF3PuX0ResofXvnM2sdGn\n/i+2hIa1lrV1a1latRSHcZCXkIcv6KMkuYThScN5dcerzN8znygThTvKzbambXT5uxiZMpLhScO5\npOgS8hPy++a+Ts2aSowzht+t+h1/2vgn4NBA7InyMCx+GBMzJmKxfas/7GzZyYjkEYxJHcPVI69m\nWvY0fEEfG+o3sLNlJ+fmnUuqO3VIj2SKSPg1eZtYX7+elu4Wajtrae1p5bnNz33mmoXYqNijXsfg\nifIQtEG6A5/dVG1SxiTOHnY2bT1t/G3H32jqbmJmzkwMhk+qPjkknM7OnU1WbBaN3kacxkltZy27\nWnfR4esgMzaT5Jhk3E430c5o8hPyiXZGkx2XTSAYIMWdwqbGTbyy/ZW+v6HD4odR3VFNwAZwO90U\nJhZyUeFFxEb1vgnwRHnIjM1kXd06drfuxuVwMTlzMtlx2VS2V/LKjlcYlTKKxOhEmrqb2NG8g7Fp\nYxmdMpo0TxpTs6ZqUOIgCtHh9PgVEOiB29+JdCUs2FzDbU+uYHZJGo/cNA1P9JE//pHTR6O3kThX\nHDHOGKy11HTWELABqjuqeXj9w2xr3NZ30c6RuBwu0jxpNHQ1MDFjIhmeDObvmX/Ix30HeKI8pLpT\n+0aUvzLmKzR5m5iePZ3z8s8j3ZN+2D6qO6rJjM1USBaRkAsEA+xq2UVtZy3dgW6aupvY1LCJhOgE\n8hLyyInLocHbwPv73ufDig+ZN2IeARvgvb3vEeOM4Y4z7iAnPocOXwfv7nmX13a+1tf2yJSR3D35\nbs4Zdg7GGHY276TR20hBYgEV7RWHvSCuJ9BDk7eJrLisfv8MLd0t3Lv4XsrqyxiVOoprR13LuXnn\nDtiqMacrhehwev37sO6v8KO9MAg+6vrL8r3c8+J6LhmbxUM3HfPfXAaQP+inydtEuie9Xx+LHnzh\nViAYIGADrKxZyZq6NRQlFlGSXEKaO42Pqz5mVMoo4l3xPLXxKdbWrqXd105LdwtN3U2HtHlg5YQD\nPFEeChMLubjwYq4ddS17WvewomYFU7KmUN5WTnl7OaUppUzJnkKCK6GvHuj9CLOsvoyNDRtZUrmE\nSwovITM2k6c3Pk1dVx13T76bOQVzQvXyiYgMuIP/Dh/82IEVaNxRblyOw6+/LqcGhehwWvYwvPED\nuLts/1bgkffPL63nz0v38shNU7lobP/f5Ur4+IN+/nHRP7Jw30LcTjdXlVzF18Z/jYfXP8zEjIl8\nfsTnWVG9go+rPqamo4btzdvZ0rSFOFccSdFJ1HTWHHYJsCPJjsumoauBoqQiZuXMorK9ko0NGzkj\n4wxGpYwizhVHW08b1466ljRPWhh/chERkaFLITqc9i2HRy+CL/0Jxn4u0tUA0OMPMuOX7zIpP5nH\nbpk2aC4GOd30BHpYXLGYBXsX8LcdfwN6P/bLi89j4b6FhxzrNM5DpkZkxmZybt65WGvp8neRFZdF\nYnQiKTEpzCmYw9KqpTy3+Tlm5s5kVMoodjTvwB/0c/WIq4l1xWodVRERkRDob4jWlWgnIvsMcLig\nYsWgCdHRUQ6+dlYx//HOVp5fWc6Xpg6OEfJTwera1czfPb9vM4TkmGQuLLiQoqQiWntaSY1JZXfr\nblbUrGBJxZJDrrC+ofQG7p1+LxbLg2sfpK6rjutGX8fGho1sbtxMQnQC15deT1J0EsaYo171PLd4\nLnOL5/Z9f2HBhWH9uUVEROTI+jUSbYw5C1hjre0wxnwVmAz8l7X28NsWhdigG4kGeOh8cMXBra9H\nupI+waDlqj8swRcI8tZ3z8Xh0Gj0ybDW8sj6R/jj2j/2bQs8LH4YBnPIbksHOyP9DO6aeBezc2ef\nFssAiYiInGpCPRL9ADDRGDMR+D7wCPAUcN6JlzjEDZsKa/4MwQAcZUH0geRwGG6ZXcQPX1jHUx/v\n5pazio95jnyqtaeVxq5G1tev5+H1D+MP+tnXto8RySN44KIHyI7LBnrD9eKKxTR5m4h3xWOxtHS3\nHHUVChERETm19DdE+6211hgzD/iDtfZRY8xt4Sxs0MuZAMsfhuY9kDo80tX0+eKUPP68bC8PfbCT\nq8/MIylWVxAfSyAY4KF1D/HgugcPmaM8LH4Ynyv5HP8y818OWU7IGMO5eedGolQREREZJPobotuM\nMfcCNwLnGGMcwOmdztJH9d7Xbx9UIdoYww8vGc2XH1nKT1/dwG+vmxTpkgYlay3N3c08v/V5Xt/5\nOjtbdnJ58eWck3cOmZ5MpmRNOeqWqyIiInJ662+Ivg74MvA1a221MaYAuC98ZQ0BaSN77xu2AZdE\ntJS/N3tEOrefXcwjS3Zx/fQCphenRrqkiGvpbmFf2z6indH8buXvWFKx5JDn75xwJ98+89sRqk5E\nRESGmn6F6P3B+UVgf3KkHngpbFUNBXFp4EmFui2RruSwvn/JaP62tpLrHvqYpfdeSGaiO9IlDZgm\nbxMbGjaQ7kmnvaedv279K2/uevOQY8akjmFa9jTOHnY2s3JnRahSERERGar6FaKNMXcAdwKpQAkw\nDPgjcHqvsZUzASpWRrqKw/JEO/n+JaO458X1fP/5tfzpthmRLilsmrxNLNq3CF/QR6evk8c3PE6j\nt7Hv+RhnDNGOaL4x6Ru097Rz9cirKUwsjGDFIiIiMtT1dzrHt4DpwFIAa+02Y0xm2KoaKgpmwaJf\nQ08HRMdFuprPuG5aAesrWnj6k728u7HmlNjJcEX1Cv71w3/FG/AyK2cWu1p2UdZQdsgxmZ5M5hbN\nZVbuLNI8aYxPH0+qW1NaREREJHT6G6K7rbU9B3bBM8ZEAYN/q8NwyxoHWKjbDMOmRLqaw7rnslJW\n723mm8+s4olbpzF7xNBZgq2lu4X5e+azpXELTd4mGr2NbGjYQCAYwOlw8urOV/FEebh21LWcmXkm\naZ40suOyKUgo0BrNIiIiElb9TRrvG2P+GfAYYy4Gvgm8Gr6yhojMsb33NRsHbYhOcLt45vYZXPO/\nH3HTY8t44KtTuHiQj0j3BHp4cN2DPLTuIQBio2Lp9HcyPGk4c/LncNfEu8iKzaKtp43M2ExtcS4i\nIiIDrr8h+kfAbcB64OvAG/RuuHJ6SykGVyzUbox0JUeVHBvN/31zNnP/azF3PLWCx2+dxpzRg282\njrWWT6o+4e6Fd9Pp72Rkyki+OfGbXFhwIeXt5eTG5R6y7FysKzaC1YqIiMjprF/bfkfaoNz2+4CH\n5kBMPNw8+Afm39lYwx1P9b6O733/PEoy4iNWS2tPK89tfo5VtavY2byTqo6qQ57/9Tm/5orhV0So\nOhERETldhWTbb2PMeo4y99laO+EEaju1ZI2FLW9Fuop+uXhsFo/fOo1vPbOK7z63mhfumo3bNbAb\nilR3VHPPB/dQVl+GL+gjMzaTMaljmJkzk/L2cs7KPYuLCy+mILFgQOsSEREROR7Hms5x5YBUMZRl\njoPVT0N7LcQPvikSf2/O6Ex+dc0ZfPe5Nfzp4z3cce7A7LZY31XPjz/6MR+Uf4DDOLih9Abmlcxj\nTNqYAelfREREJJSOGqKttXsGqpAhK+vAxYUbhkSIBvjcxFxeWFnOL97YRFxMFF+eEd5R34auBr7+\nztfZ2rSVG0pv4MrhVzIhQx9iiIiIyNDl6M9Bxpg2Y0zr/pvXGBMwxrSGu7ghIWt87/0gv7jwYMYY\n7r92Im6Xg5+/tpG1+5rD1teqmlV85Y2vsLVpK/eddx//POOfFaBFRERkyOtXiLbWJlhrE621iYAH\n+ALwv2GtbKiIS4e4zN5l7oaQrEQ3i34wh+RYFz94fi1eXyDkffx2xW+5+a2b8fq9PHbpY1xWdFnI\n+xARERGJhH6F6IPZXi8Dl4ahnqEpayzUboh0FcctO8nNL64ez7badm56dBmtXl9I2l1SsYRb37qV\nxzc8zmVFl/HSvJeYlj0tJG2LiIiIDAb9nc5xzUG3Lxpjfg14w1zb0JE5Dmo3QzD0o7nhdkFpFv99\nw5ms3tfEHU+uwB8InlR7q2pW8d0F32VlzUq+Ouar/OqcX5HiTglRtSIiIiKDQ383W7nqoK/9wG5g\nXsirGaqyxoK/C5p2Q1pJpKs5bp+bmIu3J8A/vbiOR5bs4q7zTuxnWFa1jO8t+h658bn8ae6fSHYn\nh7hSERERkcGhXyHaWntruAsZ0vq2/y4bkiEa4ItT8nh5TQW/fnMzIzLiueg4tgZfWbOSJ8qeYFH5\nItLcaTxw0QMK0CIiInJK6+90jieNMckHfZ9ijHksfGUNMZljwRkN5csjXckJczgMv75mAoVpsfzD\ns6t4dW3lMc+x1vL81ue55a1bWFS+iK+N/xovzXuJvIS8AahYREREJHL6O51jgrW2bx00a22TMebM\nMNU09LjcMGwq7P4w0pWclIK0WP769Vnc+aeV3P2XNZwxLImi9LjDHrundQ+/WvorPqz8kFR3Kg9d\n/BCjU0cPcMUiIiIikdHf1Tkcxpi+q8OMMan0P4CfHgpnQ9Va6G6LdCUnJSvRzUM3TgHg2WV7D3vM\niuoV3DH/Dj6s/JAfTP0BC65doAAtIiIip5X+huj/AD42xvzcGPNz4CPgN+ErawgqOgtsAPYti3Ql\nJy0r0c1l47J57MNd/Mf8LWys/HRfnbd3v8033v0GDuPg6cuf5uZxN+N0OCNYrYiIiMjA6++FhU8Z\nY1YAF+x/6Bpr7dDaXSTchvWO3lK5GkZcGNlaQuDHV42lo8fP7xds5/cLtnPhmAwmjCrnka0/Jikm\niUcueURzn0VEROS0dTxTMlKBDmvt48aYDGNMsbV2V7gKG3LcSZA6HKrWRLqSkMhMdPP4LdN4d9tm\n7l/6EEt7lrNsawtRwQyem/sX8hIyIl2iiIiISMT0K0QbY34MTAVGA48DLuBp4KzwlTYE5UyE8hWR\nriIkWrpb+Pdl/86rO18FYGL2RIqiL+KZBSnc8OB6XrxrNpmJ7ghXKSIiIhIZ/R2Jvho4E1gFYK2t\nNMYkhK2qoapgFmx4qXfTlZSiSFdzUn6z/De8tvM1rh11LXOL5/Zt2z0mYQ8/+dsGbnx0Gf99w5mM\nztavgYiIiJx++nthYY+11gIWwBhz+HXPTnfF5/be7/ogsnWcpCZvE2/uepPrS6/n32b9W1+ABvjq\nzEL++NUp1Ld3c+l/fsDzK/bR+6shIiIicvrob4j+qzHmQSDZGHMH8C7wcPjKGqIySiEuc0iH6Jbu\nFu754B58QR9fGvWlwx5z0dgsnrptOhPykvjhC+uY+1+LqWrpGuBKRURERCKnXyHaWns/8ALwIr3z\nov/NWvv7o51jjHnMGFNrjCk76LGfGGMqjDFr9t8uP5niBx1jekejd74PQ3B0tq6zjtvn387y6uX8\ny4x/YUTKiCMeOy43iZe/eRY/vHQ0m6vbmPWrBTz0wQ66egIDWLGIiIhIZPR3JBpr7TvW2h9aa39g\nrX2nH6c8AVx2mMd/Z62dtP/2Rn/7HzKGnw8dtVC7KdKVHBdrLT/75GdsbtzMz876GdeVXnfMcxwO\nw7fmjODBG6cwpTCFX76xmUv+831qW70DULGIiIhI5Bw1RBtj2owxrYe5tRljWo92rrX2A6AxpNUO\nBcPP673fNj+ydRynd/a8w6J9i/ja+K9xVclVx3XupeOyef7rs/jDl8+kob2Hrz25nPZuf5gqFRER\nEYm8o4Zoa22CtTbxMLcEa23iCfb5D8aYdfune6Qc+/AhJrkAhk3tXaVjiPiw4kP+35L/x5jUMXxr\n0rdOqA2Hw3DlhFz+58uT2VTVxqxfvccfFmwjGBx601pEREREjqXf0zmMMRONMf+w/zbhBPt7ACgB\nJgFV9G4nfqT+7jTGrDDGrKirqzvB7iJkxEVQvQ66miNdyTEtr17Ot977FgWJBTxw0QNEO6NPqr05\npZn853WTyE3ycP/8rfz4bxs0T1pEREROOf0K0caY7wLPAJn7b88YY759vJ1Za2ustQFrbZDe1T2m\nH+XYh6y1U621UzMyhtjueMXngA3C3o8jXclRNXub+clHPyEnLoen5j5FmictJO1eNTGXt+4+hy9N\nzeNPn+zh0v/8gM3VR539IyIiIjKk9Hck+jZghrX236y1/wbMBO443s6MMTkHfXs1UHakY4e0YVPB\nGQOrnop0JUfU7G1m3ivzqOyo5Kezf0qcK7RLfxtj+PU1E3jwxil09vi54r+XsHBLbUj7EBEREYmU\n/oZoAxz8mXxg/2NHPsGYZ4GPgdHGmHJjzG3Ab4wx640x64A5wPdOoObBz+WGMVfBljegc3BeW/mz\nT35Go7eR75z5HabnHPEDgZPicBguHZfNS988i9xkN7c+vpz/encbO+vaw9KfiIiIyEDp77bfjwNL\njTEHrpb7PPDo0U6w1t5wmIePes4pZerXoOwF2LcURs+NdDWHWLRvEe/seYfbxt/GreNvDXt/+amx\n/Pn2mXz72dX87t2t/M/C7fzDBSP4/KRhFKTFhr1/ERERkVAz/d2y2RgzGTh7/7eLrbWrw1bV35k6\ndapdsWLFQHUXGr4u+FU+zPg6XPqLSFfTZ3PjZr7+ztdJikni2SueDfk0jmMpq2jhu8+tZkddB9FO\nByWZ8YzLTSQtLpq9jZ3MGZ3JpeOzSfK4BrQuEREREQBjzEpr7dRjHnccIToFyOeg0Wtr7aoTrvA4\nDMkQDfDU56F5D3x7Ve9uhhH2ceXH3PnOnQD89cq/MiZtTMRqqWrp4qEPdrJidxPba9vp8n06W8gY\nePyWaZw/OjNi9YmIiMjpqb8hul/TOYwxPwduAXYAB1K3BS440QJPC+M+D69+F6rXQ86JrgoYGp2+\nTn659JcA/PLsX0Y0QAPkJHn48VXjAAgGLV5/AJfTwRvrq/juc2u49YnlzCxO43sXj2J6cSotXT4S\n3VGYQfBmRERERKRfI9HGmC3AGdbanvCX9FlDdiS6ox7uHwVnfw8u/NeIldHp6+TWt29lU8MmfnH2\nL457R8KB1t7t59dvbuLpT/YCkJfiobypi6mFKYwflsSd5w4nIyEGry9AglvTPkRERCR0Qjqdwxjz\nIvANa21E1igbsiEa4MnPQWsF/MOKiEzp6A508/V3vs7q2tXcf979XFx48YDXcKJ21LXzVlk1m6pa\naWjvoaGjmx11HSS4o4hyOKhv7yY3yc01k/OYPSKNlNhoshLdpMS6NGItIiIiJySk0zmAXwGrjTFl\nQPeBB621nzvB+k4f46/pndKxbxkUzBjw7h8ve5yVNSv55dm/HFIBGqAkI55vzRlxyGMLN9fynedW\n4/X5OH90Bjvq2vnDwu38YeH2vmNKsxO4cEwmE/OSSU+IoTQ7gdjo/v6qi4iIiBxbf0eiNwAPAuuB\n4IHHrbXvh6+0Tw3pkeieDvhNCZz5Vbji/gHt+q3db/HD93/I5MzJPDn3yQHtO5yCQYs/aImOcmCt\nZVtt74g1QGdPgCc+2oXX1/drSkqsi5goJ9+7eCQtXT7mTRpGVqI7UuWLiIjIIBbq6RzLrbXTQlLZ\nCRjSIRrg2S9D1Rq4uwwc/d3f5uT4Aj6uevkqKtoreOPqN8hPzB+QfgeDiuYuFm2ppSA1lo5uP88s\n3cvibfV9z0c7HcwYnsrM4WmcNyqD8cOSIlitiIiIDCahns6x2BjzK+BvHDqdY0CWuBvyzvgibHkd\ndrwHIwdmSsUj6x+hor2CP170x9MqQAMMS/bwlRmFfd9fOi6bHXUd7GvsxOEw/Hb+FhZvq2fxtnru\ne3sL8TFRfO/iUdx2dnEEqxYREZGhpL8h+sz99zMPekxL3PVX6ZUQndC7DfgAhOh1det4cN2DXJB/\nAbNzZ4e9v8HOGMOIzHhGZMYDcN6oDDq6/dS0enn6k728uq6Sn7+2kX2NnZw/OoPsJDel2YkRrlpE\nREQGs/5O5/hXa+3P93/tttZ6w17ZQYb8dA6AP10NzfvgW8vCPqXj9rdvZ1vzNl783Iuke9LD2tep\noNsf4Jevb+LJj/f0PRYX7WREZjzTilL5p8tKiY4amGk4IiIiElkhmc5hjLkH+AD4AvDz/Q9/BEw+\n6QpPN6VXwOvfh13vQ8mcsHUzf/d8llYv5e7JdytA91NMlJOfzhvP7ecMp7bNy5p9LTywaDs76zpY\nW97C2vJm/vjVKaTFx/Sds3ZfMw0d3aTERtPjD+ILWCYVJBMfo1VARERETgdHHYk2xswDzgNuB9YC\nm4FLgEustVsGpEJOkZHo7nb490KYdjvM/fewdGGt5aY3b6LB28Ar817B5dRGJCcqGLQYA//f65t4\n4qPdBIIWl9MwNjcJrGVtectnzomOcnD2iHS+c+FIJuYlaa1qERGRIShUFxY2A/8MnL//NobeEP0j\nY8xoa60m3PZXTDyM+Rys+wtc8gtwhn7E8plNz7Cmbg33Tr9XAfokORy9AfhfrxzLWSPSeHVtFWv2\nNbOvsZPUuGjuOq+E3GQ3Pf4g6fEx7Krv4JOdDSzYXMuCzbUkuKOwFu44ZzjfubB3res/fbKHurZu\nrp9ewKbKVjZUtpLoieKmWUU4HQrcIiIiQ8mxRqJ/CcwApgJPAOuA71trxw5IdfudEiPRABv/Bn+9\nEW5+FYrPDWnTQRvk4hcupjCxkEcveVSjoBHS6vXxxroq3tpQzaItdQDMGp5GQWosf1mx76jnjs5K\n4OKxWQStpbMnQE6SmySPi5S4aM4fncGavc08s3Qv04pSmJSfwrqKZgJBy7yJw4h3RymIi4iIhECo\n14leC9xG71zoXwBbgCZr7VUnW2h/nDIhuqcDfjMcJt8Ml/8mpE3/buXveKzsMe479z4uK74spG3L\nien2B7jp0WUs3dUIwGXjsvnG+SX8fsF2zixI5pbZRby/tY7F2+qoavGyvbad8qYuohwGj8tJW7e/\nry2X0+ALHP2/1XG5iTS091CcHsfZI9Mpb+piQ2ULE/OSGZOTSFyMkzavn3mTcklw65MKERGRwwl1\niP6Ntfaf9n+92lp7pjEm3Vpbf6xzQ+GUCdGwf+OVtfC9MgjRaPG7e97le4u+x4zsGTx8ycMahR5E\nvL4AO+s6KMmMIybKedRjg0FLW7efaKcDT7STlk4fnT4/y3Y1snpvM8XpcYzOTiAtLprF2+oZlZVA\ngjuKR5fsYvW+Jtq8fpo7fcesKS0umrG5iVw2PpsvTM6jormLNXubmTE8le217exr6mLCsCTG5CR+\nZlUSXyBIeVMXK3Y38sG2ei4fn01mYgyPfbibutZufnDpaKYXp57UayYiMhj5AkEcxuhTv9NASEP0\n3zU80Vq79oQrOwGnVIhe/Qy88k247hkYc+VJN7eyZiW3v307pamlPHjJgyRGa33j011nj5/K5i4S\nPS5SY6MxxrC5uhV/wLKnsZNHFu9ka00bXl8Qp8MQCB7+b0CiO4qCtFjq2rqZUphCRnwML62uoNXr\n/8yxUQ5DvDuK5k4fHpeTb55fQmNnD+eMTGdGcRpxR1i1pLPHj8fl1Bs/EQk5ay0NHT1Ut/SuylvZ\n3LX/WhQXw9PjyEyMoaG9h3c31fDB1jq+OCUPX8Ayf2MNMVEOvn3BCPJTY2nt8vFmWTWPLtlFtNNB\njMvB+Nwk7plbyqT8ZABqW714fUHS4qOpauliRGbCZ+oJBi3d/v+/vTsPj6u67z/+PjOj0WjfV8vy\nvmMbg5dgDGYxBGhYshGgpZClJGmSJmmSJk3bNEm3pE3btE2TQBJ+zcIWCBC2BAhrMNhGMXjDq2TZ\n1mbt+zLSzPn9cUaW5FUCSVeyPq/nmUcz99659ztHd+79zrnnnBslIXj6CpXBusIR/ubRHWyvaGFR\nQSo3r5rOmtlZSuTH2Jgl0V44q5Lormb47xWQUgB3vACB+DO/5xTqu+p5zyPvISWYwkPXPkRavG5f\nLcPTG4nywp5aNpU1YrHkpMQT9PuYm5vMnJxkHnmjkqd2VBPwGxLjAuyrbaO7N8KcHDf/PcsKmJGV\nxP7aNjrDES6el0NKKMDfPbqTh9+oHLKtOL8hNyXE9MwEVhRnYC30RaJsr2ih5FAjq2dlsqQwjfeu\nmHbsFuylde2U1rZz0bycEZ1wRGRq6u6NsLu6lebOXmrbumnp6uX/NpZT1TJ6t7WYk5PERfNyaOvu\n4zc7q+kMR7h2eSGJcX4efqNiSJO765YXUpAeor4tTJzfUNPazZ7qNo62dbMoP5X0xDjiAz5CcX6K\nsxIJBfwUpoeIWkhPiGNnVQsPb62kqTNMd2+UpKCfjnAEgOzkIAvyU7j6nAJyU+LpjVgSgj5yU0K8\neaSZ0rp2ggEf6+fnkJEY5GhrN/dsPsyi/BTSEoO0dfeyp7qNJYWpLJmWSlZSPIsLU4nz634I/ZRE\nT2Q7HoJffRRWf/wdtY3+6a6f8p2S7/DgtQ+yMHPhKAYoMlQ0aolaS+AMB1lrLZvKGonzG4ozE3nl\nQD2PbaviaGsPPgN7atqO1XwvzE8hJyWerYea6AhHCPp9ZCYFqWkdetJbXJDK+88vYk5OEq3dfeSl\nxLOoMJXkYODYKCoi481ay+/317OjsoXUUIBZ2cm0dffS1Rvh0gW5ZCQFAejo6WNTWQPtPX1UNHWx\nojidxQWppCcGRz2mrnAEiyXo97Gnpo2k+AAzMhMBONjQQWtXL8uL0of1vYlG7YT6fh2obecXmw7x\nxPZq4gM+ZuckkRj04zOG18ubaOvupacvOuQ9s7OTeO+KaaQnBemLRFmQl8J5MzLYWdlCZzhCU2eY\npGCAuICPNbNccza33gDl9R1sr2xhR0Uzy4rSCcX5uWxh7rEa4Lq2Hn74Uin3bzlMRzjC3NxkCtJC\nHDlb2WwAACAASURBVG3tprq5m7iAj7buXqIWIlFLcWYic3OTWZifws6qVrrCfXT3RukM91He0HnK\nK4IbFuXy4QtnceHcbNq6e3lxbx2/3VnDkzuqR7V8s5PjuWZpPrOzk6hq6WZJYSrXLS8ccpUwErX4\nDFPiyqGS6InukU/AjgfhSwcgIWPEby9vKeeWJ29hVvos7rnmnjEIUGT0RaOWps4wwJCb11Q2d/Gj\nl8t4YW8thxo6uW55IRsW57H1UBOvlTaw92jbCesKBnykJ8Rx8+piPrdhHr0Rywt7azl3ejp5qaEh\ny7b39PHK/joSgwEunp9zwroqm7vITAySEPRzoLaNfUfbefeS/GMnzEjUsremjd5IlPaePrKSg+Sm\nhMhMGv1E6GzRfyk9Kyk4qU+6rd291LZ2s+1IC+FIlCsW55EcH+A/n93HnS+XnfJ9C/NTyE8L8Wpp\nA+HjkjuAvNR4ZmQl8fVrl7CoIOWkZRSNWho7w6QnxNEXtYTi/LR29/K7t44CMCcnmVCcn+/+bh+/\n2VlDMOBzya8xhCNumwGfIWot/TnajKxErl9eSE9flI5wH0sK09hd3Up9ew/TMxOpbwtT09rFloON\nXLoglxtXTicnJZ4ZWYlvK/Fv7+ljV2ULq2dlDvmM4b4o5Q0dvHqgns0HGwnF+alp6WblzAzWzc1m\ne0ULC/JTCAZ8/LLkCA9vHbjCNTs7idbuXho6wlgLoTgft6yewZrZmeSkxJMSH6C7N8qSwtQx/yHQ\n1t3Lq6UNrJ+fQyhu4KpZf8WDBZo6w+SmhE65jnBflEjUsulgA93hCCmhOM6fkUEw4Dtls42Wrl4q\nmjrZXObKLinej7UuGV5YkMK+mjYe317NjKxE/MZwy5piEuL8NHWGea2sgfNnZHC4oZOSQ01kJgW5\n//UjbDvSPGQbN64s4rKFecQHfNyz+RC/211LUtDPunnZ/NlFs1lSmMY9mw+RGopjVk4SDe1hFuan\nMDM7CWstOypb2FvTxgOvH+GKxXmsmpXJ4oLUIeXUX1Ymlpxba2nv6ePpXUc5f0YGs7KT3v4/5x1Q\nEj3RHd4Ed78b1n4GrvzHEb/9b1/5W5499CwPXfsQ01Onj0GAIuNv8MG0n7WW18ub3Ek+I5E3jzSx\ns7IVnw/K6jrYfLCRaekJ1LX3EO6LEorzcV5xBlcvLWBnRQuvH2qkrK7j2PquP7eQnl7XLvFdszO5\n8+WyY/PPnZ7O7upWemLjf6+amUFXb+SUidC1ywuZlZXIh1YXs/VQE4+8Ucm+o218fsN8blgxzdN2\ni23dvUSilvTEIN29EcobOkgKBshLDR3rMLr1cBOHGzq5bFEuBkiODww74X1hby1Pbq+muTNMSiiO\n84rT2V3TxusHG12C0x6mL2rJS43ncxvmc/25hUQt1LR0MScnmfr2MK+W1uP3GeL8PoIBHzUt3VQ3\nd1HX3kMozk96QpCFBSlkJgXx+wwrpqcTjkRp6+6jsqmLyuYuABrae5iTm0xBWgKZiUHSEt/Z6DPW\nWp7cUc29mw+z7Ujzscvo4JLSvlhGesXiPP7jxuXUt4epbe0mJRRHdUsXb1W1srG0ntrWHtYvyOGS\nBbkcbuzkwjlZ7Kpqpby+g0ONnby0r466th4CPsPiwlTyUkNkJ8eTnhjH49uqaOvuo6XLdRZOCQXI\nSgpS3tB5yrg3LMolIzFIwO9jTk4SwYCP0tp2UkJx5KXG09MX5dm3jh4bMehUpmcmsKQgjRf31dLd\nO7Dfr56ZSVVLF9ctL2RmdhIVTV1Mz0jgkgW5lDd08FppAzecO438tBAl5Y3cs+UwT253NaZLp6Xh\n8xlykoNEopYXYkOADkfAZ1g/P4c/flcxly7IPbaPtnX3Ul7fydIiNWUcDa3dvWwpa2R+Xgr//uxe\nfv1m1ZD57z+viKOt3bxW1nDKmnNwP2oG7zeDJccHuHxRLpcvyuONw00caXQ/BLr73I+HSNQe2+cL\n00I8/8VLTki6x4OS6Mngng9C5VY3UkdcwrDf1tDVwDUPX8NVs67iG2u/MYYBikxs4b4oP/p9GY++\nUUlaQhyrZ2VS2dzFc7traR80ROAFs7O4Y/1sfvhiKZsPNpKfGqKpM0xPX5Rp6QkUpofYdqSFqLXM\nyk7i8kV5bD7YwBuHm5mdncTF83MoykjgcGMndW09rJ6VyaulDTy3+yinOpckBv1MS09gdk4Sf3bR\nbKpaujm3KJ3irMRRLYOmjjBpCXG0dfeREhpo4nLzXZt4rayB3JR46tt7hsS5MD+F6ZmJPBur0Rwc\n8+ycJJYXpbN2TjabDzZQVtdBe08fR1u7iVpLfloC+anxPL1r6Hv7rZ2TxYHadjp6XC1nZbNLdgcn\nn3mp8XT2RIYM4zhYSihAR0/fKcv2TBYVpHLFolxm5ySzvaKFxo4ekkMBohZykuMJR9z/PT0xjg2L\n3NjsWw81Y7GE+6L8YtMhXthbx8ysRGZlJxHn93Hb2pkkBP089IcKWrt6WTc3mw+cX3TGJk6nc7S1\nmx+9XMarsastxycm7ztvGllJQbYcbKSyuYvizETOmZbGOdPSYh1yoaalmxtWTBtRjX9pXTtNHWHO\nnZ5OaV0HSfF++iKWpPgAOSkDV4g6w308+9ZRDjd08n+vltPQESY9MW5YowABx+7yGh/wcaC2nezk\nIO3dfYSCfjITg5w7PZ3slHgumJ3FzOwk2nv62FzWQF1bD5cvyqW2tQeA6ZmJTM8c3e+NnJ61lqOt\nPdS391BS3sjM7CQuWZALuCZKP/79Qaqau7h8US6JwQD3bjnEudPTaenqJdwXJSHOT15aiPOKM8hJ\niWdnZQtvVbdyqL6Tp9+qGbIPrZmVyYriDA7UtpMSCpCbGs+c7GSyU4JctjDPk8+vJHoyOPAc/OJ9\ncOPPYPH1w37bF178Ai9VvMR9f3Qf8zLmjWGAIpNTQ3sPP990iOuWFzI7JxlrLcYYolFLWX07M7KS\nqGnppr69Z0gb0a5wBL/PHKup7X/fqXSFIzyxvYqndx3lvSumsWpWBukJQe7eeJBDDR0caujk1dKG\nIe+ZmeUSoZauXlJCAQrSEig51EROcpA5Ocn09EWpb+9hcaxNYlc4Ql1bDzkp8WyraGF7RTOVTV1M\nz0ykvaePh7dWHEs2s5KCrJuXzf6j7bxV3QrAJQtySA3FkRyryfzNzhqqmrvo6o3wvhVFLMhP5sW9\ndczISmRPTRt9EcuB2na6el3ta15qPGkJcczLSyHOZ9hV1UpvJEpBWgLfev9S0hODpMQH2HvUvXdp\nUdqQKwq9kSibyxp5tbSeuNjwjduONNPdG+HTl80jNRSgpy9KbyRKc1cvS6elkZ0cT3tPH13hCJXN\nXeyoaGZHZQsJcX7SEoNkJ7uEMd7vY1ZOEj4DOypaSAnF8fv9dTw6qAYt4DMkBP1DknJjoP/Ul5kU\npLEjPOR/5DNw+aI8/v3G5aSO05jqHT197Klpo7a1m2kZCZxTmDah2iSD67wX9PvYXdNKfMBPdnKQ\nN480s/VwM0XpCZw3I517Nh8G3M2j1s3LpihDya8M1RuJ8lppA5vKGlhcmMrV5xRMuNFGlERPBpFe\n+J/zweeHWx+BjJlnfEtpcyk3/PoGblt8G19c9cWxj1FE3pGWrl7+7ek9tHX3kRqK4+X9dRw67pL8\n4oJUevoilA5qdjIcoTgf58/IYFlROtGo6+hW3tBBbyTK7Wtn8pdXLDjp6CaRqKWrN0LyKYYe7O8M\nV5yZyLy8E4fqmuistWyvcFcWlhWl4/cZusIRalq72VvTxoVzs6hs7uLlfXX8ZmcNRxq7uHh+Nres\nLgYgLzWkmk+RKUxJ9GRx4Dm4/xbIXQwffRb8Jz+pAUSiEW584kb2Ne3j0esfZU76nHEMVERGS09f\nhO0VLSydljakvV93r6t1zkwKsqW8ked315IY9FOUmUh8wEdWUpClRWmkJcTRHY6e9Hbv3b1u1IGC\ntOE3ERMRkQHDTaJPnbHJ+Jh7Obznu/DoJ2DHL+HcW0656C92/4J9Tfv45tpvKoEWmcTiA35WzTzx\nzo6hOP+xGtBLF+RyaawN4qnWcTKhOL8SaBGRcaCRtSeC5TdBahHs++0pF+mL9nHP7ntYlb+KG+be\nMI7BiYiIiMjxlERPBMbArItd046m8pMu8p2S71DdUc0tC2+Z1GOuioiIiJwNlERPFOs+D3098Mp3\nT5jV2dvJw/sfpjCpkEumXzL+sYmIiIjIEEqiJ4qc+W6Yuz/8P3jrsSGznjr4FF19XfzTun8i4FMz\ndhERERGvKYmeSNZ83P199JPHJu2s38k3X/smxSnFnJd3nkeBiYiIiMhgSqInkumrYcPXIdwOh14F\n4IG9DxDni+OHG36Iz+jfJSIiIjIRKCubaNZ8AhIyYNMPeKLsCR498CjXzrmW6anTvY5MRERERGLU\nwHaiiUuAFbfCa//LfYk9JAQS+Pz5n/c6KhEREREZRDXRE9H5t1Pjg+2Nu7lj2R2kxad5HZGIiIiI\nDKIkeiLKmsMTcy8AYEPeao+DEREREZHjKYmegNrCbfw4Usu6zi5mVu30OhwREREROY6S6AnoybIn\n6Yh08+neEGz5EVjrdUgiIiIiMoiS6AnGWssDex9gUeYiFi98H1RthU0/8DosERERERlESfQEs7Fq\nIweaD3Dzwpsxl/415J0Dm74P0ajXoYmIiIhIjJLoCaS+q55P/s7drfA9s9/jhru78LPQcgR+eavH\n0YmIiIhIPyXRE8jPdv0MgNuX3E6cP85NXPpBWH4L7HkCGg96GJ2IiIiI9FMSPUF09nbyeNnjXFx0\nMV9Y+YWBGcbAZX/jnj/7d94EJyIiIiJDKImeIO7eeTf1XfXcsvCWE2emFUHRatj9OFRvH//gRERE\nRGQIJdETxMsVL7MqfxUXTrvw5AvcfD/4ArDlrvENTEREREROMGZJtDHmbmNMrTFm56BpmcaYZ40x\n+2N/M8Zq+5PJnsY97Gncw5r8NadeKCkLzr0Ftj8ANboBi4iIiIiXxrIm+v+Aq46b9hXgOWvtPOC5\n2Ospraajhi+//GUyQhl8YP4HTr/w5X8PwST46bXQ2Tg+AYqIiIjICcYsibbWvgwcn+ldD/w09vyn\nwA1jtf3J4uuvfp2Ktgq+9q6vkZWQdfqFk7Lhqm9BVyNs/+X4BCgiIiIiJxjvNtF51trq2PMaIG+c\ntz+hHGg6wMaqjXxqxae4fMblw3vT8pugYLm7AUtX89gGKCIiIiIn5VnHQmutBeyp5htj7jDGlBhj\nSurq6sYxsvHz0P6H8Bs/186+dmRvvOrb0HwYNt85NoGJiIiIyGmNdxJ91BhTABD7W3uqBa21d1lr\nV1prV+bk5IxbgOPlaMdR7t9zP1fMuIKcxBF+vhkXwKyLYNu90BcemwBFRERE5JTGO4l+DLgt9vw2\n4NfjvP0J48F9DxKxET58zoff3grWfBKayuGpL5xxUREREREZXWM5xN19wGvAAmNMhTHmo8C3gCuM\nMfuBDbHXU86+pn3cu+de1hauZXHW4re3koXXwMqPwJv3qm20iIiIyDgLjNWKrbU3n2LWMHvQnZ0i\n0Qhff/Xr+I2fr6756jtb2Xl/CiV3wyMfh5vuA5/unSMiIiIyHpR1jbPN1ZvZUb+DWxbewozUGe9s\nZYUr4JK/hn2/hee+PirxiYiIiMiZjVlNtJzcc4efIyGQwEeWfmR0Vrj+y9BWDRv/C4IpsP5Lo7Ne\nERERETkl1USPo6iN8sKRF1g3bR3x/vjRWakxcM2/w4x18MI/QtWbo7NeERERETklJdHjaEf9Duq6\n6ri8eJSbhfsD8P4fgy8OSn4yuusWERERkRMoiR5Hzx16joAJcFHRRaO/8tQCWP4hN1pH+cbRX7+I\niIiIHKMkepxEohEePfAo64rWkRpMHZuNvPufITkPXv63sVm/iIiIiABKosfNlpotNPU0cfXMq8du\nI6E0OP92KHsB9j09dtsRERERmeKURI+Th/c/TFp82tg05Rhs7WcgvRhe/BeIRsZ2WyIiIiJTlJLo\ncWCtZVvdNtbkryElmDK2G4tLgHV/CVVvwMbvju22RERERKYoJdHjYFfDLqo7qllbuHZ8Nnj+7TD3\nCnjhn6GxbHy2KSIiIjKFKIkeB4/sf4SEQALvnvnu8dmgMXD999yQd7/6M4j0jc92RURERKYIJdFj\nLGqjvHjkRdZNW0dyMHn8NpySD+/6BFSWwJOfH7/tioiIiEwBSqLH2KaqTdR21Y7+DVaGY/1XoGA5\nvHkf1O0d/+2LiIiInKWURI+xJ8qeICWYwpUzrhz/jceF4IP/B6FU+Pn7oPnw+McgIiIichZSEj2G\nwpEwLx55kcumX0acP86bIDJnw62PQHcz3H0V1O3zJg4RERGRs4iS6DG0qXoTbb1tXDnTg1rowQqW\nw22PQ2cD/GQDtNV4G4+IiIjIJKckegw9U/4MKXEpXFBwgdehwLTz4PKvQXcL/M/50NXsdUQiIiIi\nk5aS6DEStVFerHiR9dPXe9eU43ir74DzboNwOzzxebDW64hEREREJiUl0WOkrLmMlp4W1hSs8TqU\nAf44uO6/4eIvwa6HYffjXkckIiIiMikpiR4jzx5+FoAVuSs8juQk1n8FMufAL2+F8o1eRyMiIiIy\n6SiJHgPWWu7fcz/FKcUUpxR7Hc6J/AF4/4/c80c+Dq3V3sYjIiIiMskoiR4Dpc2lNHY38rGlH8MY\n43U4JzftfPjYc9BRD49/Vu2jRUREREZASfQY2FKzBYBV+as8juQMilbC5X8H+5+GZ/4WolGvIxIR\nERGZFAJeB3A22lKzhcKkQopSirwO5czWfAKayuG170GkF675V68jEhEREZnwlESPsvZwO7+v+D3v\nn/9+r0MZHp8frv5XMH7Y/AOYvR4W/pHXUYmIiIhMaGrOMcpKjpYQjobZULzB61CGzxh3I5bMOXD/\nLVC31+uIRERERCY0JdGjbFP1JkL+EMtzl3sdysgEE+Ha/wJ/EO75ABzd5XVEIiIiIhOWkuhRtrl6\nMytyVxDvj/c6lJGbdRHc/hT0tMNPr4PORq8jEhEREZmQlESPovqueg40H5hYdykcqemr4NZHoLMe\ntt3ndTQiIiIiE5KS6FG0pdoNbTepk2iAwnNh+hp45btQ9hL09XgdkYiIiMiEoiR6FJUcLSE5LplF\nmYu8DuWdu+pfwBeAn10H/77QJdQd9V5HJSIiIjIhKIkeRW81vMWSrCX4fX6vQ3nnpp0Pn9oMV/wD\nBJPgd38P/7EInvoSRCNeRyciIiLiKSXRo6Q30su+pn0szlrsdSijJ5QKF/4FfHYb3PESLL0RttwF\nD94Gvd1eRyciIiLiGSXRo2Rf8z56o71nVxLdz+d37aSv+x9Y9iHY/Tg8+knobvE6MhERERFPKIke\nJVuPbgXg3NxzPY5kDPl88L67YP1X4K1H4QcXQu1ur6MSERERGXdKokdJSU0JRclF5Cflex3K2Lv0\nr+F9P4KuJvjhRfDCP0M06nVUIiIiIuNGSfQoiNooW2u3sjJ/pdehjJ+lH3BtpedugJe+Df+1DCpK\nvI5KREREZFwoiR4Fh1sP09zTzIrcFV6HMr6SsuFDv4C1n3Hto398OTxwq8aVFhERkbOekuhRsL95\nPwALMhd4HIkH/AG48h/hc9thzSdg92Pw60+reYeIiIic1QJeB3A22N+0H5/xMSdtjteheCchA67+\nNiTlwPP/AK1VsP6vYPZ6ryMTERERGXWqiR4F+5v2U5xSTCgQ8joU7130BXjXn8OhV+Bn18POh72O\nSERERGTUKYkeBfub9zMvY57XYUwMxrhbhn+1CqadBw992LWT7mnzOjIRERGRUaMk+h3q6uvicOth\n5qUriR4imAR/8ivX6XDPk/D9C6B+v9dRiYiIiIwKJdHvUGlzKRarmuiTSchwnQ5veQDaa+H/3gNl\nL0Jf2OvIRERERN4RJdHv0P4mV7uqJPo05l0Bf/wghNtdO+nvrYSyl5RMi4iIyKSl0TneoX1N+wj5\nQxQlF3kdysQ2ez18fie88Qv43TfgZ9dB1lyYfSkULIPEbGg+BLPWQ95ir6MVEREROS1PkmhjTDnQ\nBkSAPmvtpL3V3/7m/cxJn4Pf5/c6lIkvIcO1kV76QSh/BV77HpTcDTYysIzxQc4iuOkeyJzlXawi\nIiIip+FlTfSl1tp6D7c/KvY37efioou9DmNyScl3tw1f+gHoaYfGUmipgGifazNdcjf85ApY+RFY\n9TFIzvU6YhEREZEh1JzjHWjoaqCxu5H5GfO9DmXyik+GguXuAbD4epc8P/rn8NK3YfOdMO9KOLrT\nta0uOBcW/hEE4r2NW0RERKY0r5JoCzxjjLHAndbauzyK4x3pv923OhWOsvyl8GfPw0v/Codfc00/\nOuqg9i03f9pKVzvdWAZ558Dym6FoJYTS3DjVIiIiImPMqyR6nbW20hiTCzxrjNljrX158ALGmDuA\nOwCKi4u9iPGMjo3MoTGiR58/Di77m6HTulvgtf91NdQA8alQtwd2PuReB0KQNh1mXeyagWTMdNN8\nGoRGRERERpcnSbS1tjL2t9YY8wiwGnj5uGXuAu4CWLlypR33IIdhR90OchNyyUrI8jqUqSGUBpd+\n1TX5MD7IXQQdDbDrYdj7FGAg3AElP3EPAF/AJdVFq10zkdYKyF8OfrVkEhERkbdv3DMJY0wS4LPW\ntsWeXwl8c7zjGA3b67ezIm+F12FMPXlLBp4nZcHqP3OPfgeeg233QeZsl1S/eS+UPg8vfcvNz10C\nS94LMy+EaeerfbWIiIiMmBfVcXnAI8a1XQ0A91prf+tBHO9IV18XVe1VXD/3eq9DkePNvdw9+l3y\n1/D7f3dD6fW0u1rq2l1uXiAEM9fBhZ+DWRd5E6+IiIhMOuOeRFtry4Dl473d0Xa49TAWy6w0jWU8\n4cUnw4a/H3h91b/Agd+5YfW23e+eH3oNrv+eGwkkmKQOiiIiInJaahj6Nh1sPQjArFQl0ZNOIN4N\nkwew+g5oOQIP3g4PfdhNi0uC4ndBzgIovgAWX+dZqCIiIjIxKYl+m/Y37cdnfBSnTsyRQ2SYjIH0\nYvjI07DrEWirhooS2P0YlD4Hm74PF3waNnzdjRjSL9wRe78fsOCLU2dFERGRKURn/bdpR90O5qbP\nJSGQ4HUoMhr8cbDsxoHXTYfc31/+qbs9+a5HXEfF/GVu+tafQbgNMG4EkGivG7964TWw5pMQTBz3\njyAiIiLjR0n02xC1UXY27OTKGVd6HYqMlYwZ7u/HX4IX/tmN9lH+e/cwPjdkXlK2e56UAw0HoPIP\nUFkCr3zXNQexUbjgUzDnMreuqjfckHxzLoWuZji6w411Pe087z6niIiIvC1Kot+GQ62HaAu3sSxn\nmdehyHi49KvuYS20VoI/HpJzTlyutwsOvQo7fwV7noTuZtdp8T3fdTXdj33GJdaJWdDZiLtxJ26Y\nPX/QjXu94Bq3TLgD0orc2NihdEjJg2jUJfMFy9wwfXV7INrn7vCojpAiIiLjSkn027CzficA52Sf\n43EkMq6McYntqcQlDAyvF424BPrBD8MTn3PzM2bCilvdXRfnbnB3VTzwLBz8PbRWuVucl9x9ku36\nXFORii0n324oDRIy3MgiHfWQNdfVfjcfgqo3XZKev9SNUtLdCnmL33FRiIiITHVKot+GA80HCPgC\nGt5OTs3nh/nvhk9udMl05mwoWgWhVLj4iwPLLbhq4HnzETi6E4LJrra65QiE293wexVb4Jz3Q0qB\nS5LLXnRJeUI6vP4TaCqHLXcNrOvlfz11bLPWw4y17s6PuYsg0uduqZ6U5f42H3Hrjk8+9Tpaq2Df\n07DsQ64W/fUfQ/tR13wlKfvtlZmIiMgkYqydkHfUHmLlypW2pKTE6zCO+fRzn6ayvZJHrn/E61BE\nHGuhp9Ult3V7oavJJeLJee4mM0d3uSYi1dvgrV+7aeBqqesPQE8LxKe5vxAb5m8NZM2DjlrXBjwl\nD964B8pfgUjPwLZ9ca5jJbhtnv9hN4Rg86GBcbdFRLxirXt0NUHNNkjOdxUFcQnQ1+3ucrvvN27I\n085G2POEu8J30RfcDbmifbD/GXjhX1zFRTAZCpbDRX/p1nG8SN/ojtZU8v+gaivkLXUd4BPSR2/d\nclLGmD9Ya1eecTkl0SN39a+uZkn2Er6z/jtehyIycj3t0HQQtv/SdZTs63EdHJOyXc101jzY/oAb\n4g/cMH79STdAWjEsuR7iEl0Hyd4O15Y7Yxb86mMDd4PsN+18VxOfPsPVxhsDkV7XCbP0Bde0pWA5\nzF7vTlwAfWFXK36ytuciIicTjbpRk9qOuuPH5h+65LOtBno7T1w+mOyu9p3J4IqCgnNdhUVjGQRT\n4PKvQfY8eOpL7mpcNOJGZ1r/Zdf8r73WVSQ0HYSane6qYdEq1wQvLgSBhFhCH3JJcrjdHQcrSlwf\nmNYqOLJpIJZAgmuulx9LqJPzBvrEBJOgbh/U7XYVIbMvccl882HY9ahrypeQ4T536QvuuFu4wm1b\nhlASPUbawm1ceN+FfOrcT/Hx5R/3OhyRsdMX5tgY2E0HXUfJ/GVDx8s+Xk8bPPlFlzRnz3Xtvff9\nFjrqYrVBg5JxX8A1Bek/uaUXu4S7+QjU73MnqvxlMH2NqyHKmOnWk5ChIQRlYuhshNq3XNKTNdf1\nOejrcvvqYF1N7u/RXW6fDqWOe6hY62pUT/f9ncj6elxt8PZfuhtmZc2NNX3LdMeY9jqoeH0g2e03\ndwMkZLrpuYtdAltZ4o5vnQ2xZmvGzetqcglx7mI4+JIbcanqjViimQAXfs5tD6D0eXjuH1ySDq7v\nSiB08mS9X0KGW3f1tuEl7+BiX/MJOO9P3XF41yOw+3F3T4PjBRLc/jeYP979HXz18Hi+OJh3hWsy\nOH2Niy//nBP34ylESfQYea3qNe549g7uvOJO1hau9TockYmvp82dvI1voJbEH3RtxkPpbpSRvGfj\nywAAFcJJREFUgy/Dm/e4JCPaB2nTXc10zQ44+taJJ8ZQuquJScyE828fGEawo96ddHy+E+NoO+r+\npuSdOM/agdqccIerYU+bNnSZaNTF1tPm2o/L1NJ4ECJhyJ7v9pXSF+DeD508OcmaB7MuhtQC2Ptb\nl7T18wfdD8a8c9yPzQs/O/LL803l7upRfKr7Yfr6j2HPUy6+aK+7SlS51SWI2fPdiD91e12Ct/gG\nOP82t56WCpi+2nVA7m6GzDnQWAqt1a7Z1vx3w4o/cd+3k32nhsNaN3LRyX74Wus+S9Ub7kdzbzfM\nuMBdtWo44MrIF4A3fj7QQftUClfAjAtdzWx8imumsexDA0nvWLAWjmxxN+d615+7Y0ak18Vcv88d\nR3wBN6rTjAvd/9nnH3hvJOyON3V7XLzlr7gfZin5LtkPxEPx2hPL3lo4tNEdGw+94pLn+GT3f45P\ncftXQ6lL9DNnu2Pvqo+5HwLtR2HfMzDrIldhcWSzG6Z1271Dt2F8cN3/wPyr3H625U5Xmx1Kc8O0\nnvvHrmwr/gDJua7ce1qHHn8jfa5Z344H3X6Xu3D4ZdtQ6voAeVRhoiR6jPxo+4/47zf+m403byQ1\n6EFtgsjZrPmIqx0qPHdgWnsdvPEz9zdjhqsdqt7mDvKdDa52eukHoaUSDr/qhv9b9B53Aj28ydVO\nlb3oanGCyXDVt9zBPi4BZqyDV/8L9v7GrWvd593whA2lsOBqd+Lr7YCyWK1Ufy1TIMGd6C74lDtJ\nzb7UrbPkbndCvOQrbrqXBv8wONlrcJeeW6vcZeeRDpPYUuma/HQ2uprVGRe6ctv3W1cW7bUuSZt2\nHlz8VyeOChONQmtF7IpEPASCLgGp2ureG5fgau7ylroTd1/30M6ufWGXQPa0uX0gY+botr+v3Q07\nH3Y1kkc2D0zPWeRqc2u2Q85CdzfTzkZXMxhKc8lfwwHXIbi3w13+n7vBJROzL4Hq7S5RbSxzN3VK\nyoGsOa6Gumhl7PK8D7b+1CVhDftdeUw7D1KLXNLUfNjFEkhwSUZng3udkOH6Jfji3DoD8VC/38WV\nku/KsPTF2I2iziAp1/WHABdPKA1WfsR9R5d+wCXczYdcuWfNcc3Eqra6msxAvPtfvv4TeOU/XXyr\nPuqahiXnuP3urUddbH3dw/t/JGTA8pth/V+5z91a6WqOj2yBxdedfuQkObNInxst6vAmtw+W3O32\nvcGy57vjRbjd7Wepha6iY7BQujt+hzvdvONrxmdd7Dq1L7rOVXq0VcGmHww0K7RR992o3+v64tz2\nuCfNTZREj5HPPv9ZSltKeeK9T3gdioi018KvP+Uu82Kg+AKXuLUcHrpcUq478e940CVcp9NfU9hQ\nyrGxvAuWu9qxI1ugvQaWvNclSe01sffEn1gjOfuSWIIxz538w22uQ9N4nRCe+is3bnnWbJfwVpa4\nmp32WlcTmTETnvumq10HlxymFrgT5bTzXTv38leg+k2XqLZVu+QndZo7eT77taHNc/rFJbnkEVzy\nZaOAcTWFkbBLfmZd7JKx/kvhw+EPuv9DNDaaTNvRge30S8x2tWOzLoaF73GX/Ku2upN1fIpLzLPn\nu1rlzNmuH0B/TWVvN2BdvFvugt993cUdTHYJ/uqPu4T1jXvc9mevd+1hUwtPHm9fj2vecbp2/Qdf\nht99Y2hN9WAZM12SXfH6wLT8pe5/kF7s4murdpf6UwtdU4Ez/RgKd7gfB61Vrpzqdru2vdFe9yMk\nMduVW3Ku+/Gw/Zeutri/j8TJJGS48uvrcglYXIJ7z2kZt58lZLjtFa9x+2n1my4Bm3tZbDx9XBOL\nxTdoPPzx1NPmjqsd9W741YyZcOnfAMa10X75O+67XLjCzfvDTyFngTtGRHrcPpBSCNNXue9BS4V7\nNJadmJwn5bh9oG6P+56mFMb66Cx292jw4P+uJHqMXP7g5azMW8m3L/6216GISL+uJje6SP9lxMOb\n4cV/djUe+ctcwpSY6RLIvU/BzItc05HmQy4hTityNWlHd7nmHhkzXU1a9XaXrJwsEeoLu5PJa993\nycayG12Noy8Am+90J4uWI0PbSKZNd9suPNfV5HTUuYSo/5Jq7mKXeDaWxtqDr4690bjP1lrlEqqG\nUveZultg0/dd8tPT7moE51/ltr3xu+6t8amuFjE+xW2z/PcD8WTPd5/90KvuMzcdOrHmqF9Koeuk\n1FLhEs24JFcLm1roEq7qbe4EuvIj7nPHp7jP1FoJW3/utuuPc7WIVW+4GsiLvuCWi4Tdo6vJJYk5\nC11nsJYj7gRc+QdX8xuX4C4X998t1B90CVa0z13aDqW6S9jNh0/+GU5mzuXuEvfRnUOnJ2TCR59x\n6x8PlVuh5Cfuc8+53O2XqQUD8/vP1V4lku11royy57krN/449+Ox4YAbgjO92NUc9o91n7vYNQdZ\ndJ3bd+sPuO9RT5trbhJKG2jaIJPfya50nWq52t3uSsRL33Y/1q/7H/edHu46xoGS6DFQ11nHZQ9e\nxpdXfZk/WfwnXocjIhNdpNclqE9/1SUgmbNdgnsCw7Fa7xNmxUZHCaW7dqvHC4RcbVA04mo0bdRN\nL1oFH/zpiW27rXU/HhoOuDHDB3c062l366sscYlSWpFrKmN8A53hOhvdtkJprob27bCxGt+xSqJq\ndrhaNH+8+yESn+qaJpQ+79r7LrvR1ZTuf9Zdwo72uSsNKz/s3p823XWymiAndBEZX8NNonWzlREo\nby0HYE76HG8DEZHJwR/nLvt/cuPAtHCHS95qd7t2rqE0yFsSG/Zvq7s8n5AO5Rtd7W1comsLHoh3\nNbsZs9zr3i5XA1x43kCy193qOpC117jmDCdLAo1xtc4n63nf3+a4+F3ucTKj0VHLGPfjYKzkL3WP\nIRa65guDrfqoa4bQ2+lqxCfryBUi4gkl0SNQ2+k6WeQlnqR3v4jIcASTYMkN7nG8eRsGni+6duTr\nDqW6NogyfHEhjZMrIm/L2xyzZmo62umGyMpNzPU4EhERERHxkpLoEdjftJ+chBySg8lnXlhERERE\nzlpKokdgZ/1OlmQv8ToMEREREfGYkuhhag+3U95azjlZ53gdioiIiIh4TEn0MO1t2gvAoqxFHkci\nIiIiIl5TEj1Mexr3ALAgY4HHkYiIiIiI15RED9O+pn2kx6drZA4RERERURI9XOUt5cxJn4PRHaxE\nREREpjwl0cNU2V7JtORpZ15QRERERM56SqKHoTfSS21nLYXJhV6HIiIiIiITgJLoYajprMFiKUxS\nEi0iIiIiSqKHpaq9CkA10SIiIiICKIkeloMtBwGYkTrD40hEREREZCJQEj0M+5r2kRpMJS8xz+tQ\nRERERGQCUBI9DAeaDzA3fa6GtxMRERERQEn0GVlrjyXRIiIiIiKgJPqM6rvqaQu3MSd9jtehiIiI\niMgEoST6DA40HwBQEi0iIiIixyiJPoOyljJASbSIiIiIDFASfQZ7GveQEZ9BVijL61BEREREZIJQ\nEn0Guxp2sSR7iUbmEBEREZFjlESfhrWWI61HmJ022+tQRERERGQCURJ9Gg3dDXRHuilKKfI6FBER\nERGZQJREn0ZFWwUA05KneRyJiIiIiEwkSqJP40jbEQDVRIuIiIjIEEqiT+NI2xF8xqeaaBEREREZ\nQkn0aZQ2l1KUXES8P97rUERERERkAlESfRqHWg8xI3WG12GIiIiIyASjJPoUrLVUtFcwPWW616GI\niIiIyATjSRJtjLnKGLPXGHPAGPMVL2I4k9ZwKx29HRQmF3odioiIiIhMMOOeRBtj/MD/AlcDi4Gb\njTGLxzuOM6ntrAUgLzHP40hEREREZKLxoiZ6NXDAWltmrQ0D9wPXexDHadV11QGQk5jjcSQiIiIi\nMtF4kURPA44Mel0Rmzah1HXGkugEJdEiIiIiMtSE7VhojLnDGFNijCmpq6sb9+2vm7aOO6+4k/yk\n/HHftoiIiIhMbF4k0ZXA4CEvimLThrDW3mWtXWmtXZmTM/61wVkJWawtXEvQHxz3bYuIiIjIxOZF\nEv06MM8YM8sYEwRuAh7zIA4RERERkbclMN4btNb2GWM+DTwN+IG7rbW7xjsOEREREZG3a9yTaABr\n7VPAU15sW0RERETknZqwHQtFRERERCYqJdEiIiIiIiOkJFpEREREZISURIuIiIiIjJCSaBERERGR\nEVISLSIiIiIyQkqiRURERERGSEm0iIiIiMgIKYkWERERERkhJdEiIiIiIiOkJFpEREREZISURIuI\niIiIjJCx1nodwxkZY+qAQx5sOhuo92C7k5XKa+RUZiOj8hoZldfIqLxGRuU1MiqvkfGyvGZYa3PO\ntNCkSKK9Yowpsdau9DqOyULlNXIqs5FReY2MymtkVF4jo/IaGZXXyEyG8lJzDhERERGREVISLSIi\nIiIyQkqiT+8urwOYZFReI6cyGxmV18iovEZG5TUyKq+RUXmNzIQvL7WJFhEREREZIdVEi4iIiIiM\n0JRNoo0xVxlj9hpjDhhjvnKS+fHGmAdi8zcbY2YOmvfXsel7jTHvHs+4vTKM8vpLY8xbxpjtxpjn\njDEzBs2LGGPejD0eG9/IvTGM8rrdGFM3qFw+NmjebcaY/bHHbeMbuTeGUV7/Oais9hljmgfNm4r7\n193GmFpjzM5TzDfGmP+Oled2Y8x5g+ZNxf3rTOX1x7Fy2mGMedUYs3zQvPLY9DeNMSXjF7V3hlFe\nlxhjWgZ97742aN5pv8tno2GU15cGldXO2DErMzZvKu5f040xL8Ryhl3GmM+eZJnJcQyz1k65B+AH\nSoHZQBDYBiw+bpk/B34Ye34T8EDs+eLY8vHArNh6/F5/pglQXpcCibHnn+wvr9jrdq8/wwQsr9uB\n753kvZlAWexvRux5htefyevyOm75zwB3D3o9pfav2Ge+GDgP2HmK+dcAvwEM8C5gc2z6lNu/hlle\na/vLAbi6v7xir8uBbK8/wwQrr0uAJ04yfUTf5bPlcabyOm7Za4HnB72eivtXAXBe7HkKsO8k58hJ\ncQybqjXRq4ED1toya20YuB+4/rhlrgd+Gnv+EHC5McbEpt9vre2x1h4EDsTWdzY7Y3lZa1+w1nbG\nXm4CisY5xolkOPvXqbwbeNZa22itbQKeBa4aozgnipGW183AfeMS2QRlrX0ZaDzNItcDP7POJiDd\nGFPA1Ny/zlhe1tpXY+UBOn4NZ/86lXdy7Ju0RlheOn5ZW22t3Rp73gbsBqYdt9ikOIZN1SR6GnBk\n0OsKTvwHHlvGWtsHtABZw3zv2Wakn/mjuF+Q/ULGmBJjzCZjzA1jEeAEM9zyen/sMtVDxpjpI3zv\n2WTYnznWTGgW8PygyVNt/xqOU5XpVNy/Rur445cFnjHG/MEYc4dHMU1EFxhjthljfmOMWRKbpv3r\nNIwxibiE71eDJk/p/cu4prIrgM3HzZoUx7CAVxuWs5Mx5k+AlcD6QZNnWGsrjTGzgeeNMTustaXe\nRDhhPA7cZ63tMcZ8HHfV4zKPY5oMbgIestZGBk3T/iWjwhhzKS6JXjdo8rrY/pULPGuM2ROreZzK\ntuK+d+3GmGuAR4F5Hsc0GVwLbLTWDq61nrL7lzEmGfeD4nPW2lav43k7pmpNdCUwfdDroti0ky5j\njAkAaUDDMN97thnWZzbGbAD+BrjOWtvTP91aWxn7Wwa8iPvVeTY7Y3lZaxsGldGPgfOH+96z0Eg+\n800cdyl0Cu5fw3GqMp2K+9ewGGOW4b6L11trG/qnD9q/aoFHOPub752RtbbVWtsee/4UEGeMyUb7\n15mc7vg1pfYvY0wcLoG+x1r78EkWmRTHsKmaRL8OzDPGzDLGBHE79vG9+h8D+nt9fgDXEcDGpt9k\n3Ogds3C/vreMU9xeOWN5GWNWAHfiEujaQdMzjDHxsefZwIXAW+MWuTeGU14Fg15eh2sTBvA0cGWs\n3DKAK2PTzmbD+T5ijFmI60jy2qBpU3H/Go7HgD+N9XB/F9Bira1mau5fZ2SMKQYeBm611u4bND3J\nGJPS/xxXXicdgWEqMcbkx/oIYYxZjcslGhjmd3kqMsak4a7Q/nrQtCm5f8X2nZ8Au621/3GKxSbF\nMWxKNuew1vYZYz6NK3g/rqf/LmPMN4ESa+1juH/wz40xB3AdBm6KvXeXMeaXuBN1H/Cp4y4tn3WG\nWV7/BiQDD8aOrYettdcBi4A7jTFR3IH2W9baszrJGWZ5/YUx5jrcPtSIG60Da22jMeYfcCcjgG8e\nd+nvrDPM8gL3Hbw/9mO235TbvwCMMffhRkjINsZUAH8PxAFYa38IPIXr3X4A6AQ+HJs35fYvGFZ5\nfQ3X5+X7seNXn7V2JZAHPBKbFgDutdb+dtw/wDgbRnl9APikMaYP6AJuin0vT/pd9uAjjKthlBfA\ne4FnrLUdg946JfcvXGXHrcAOY8ybsWlfBYphch3DdMdCEREREZERmqrNOURERERE3jYl0SIiIiIi\nI6QkWkRERERkhJREi4iIiIiMkJJoEREREZERUhItIiIiIjJCU3KcaBERrxhjsoDnYi/zgQhQF3vd\naa1dOwbbXAF82lr70VFa36dxsd49GusTEZmMNE60iIhHjDFfB9qttd8Z4+08CPyjtXbbKK0vEdho\nrdUt1kVkylJzDhGRCcIY0x77e4kx5iVjzK+NMWXGmG8ZY/7YGLPFGLPDGDMntlyOMeZXxpjXY48L\nT7LOFGBZfwJtjFlvjHkz9nhj0G2HvxRbx3ZjzDcGvf9PY9O2GWN+DmCt7QTKY7d8FhGZktScQ0Rk\nYlqOu615I1AG/Nhau9oY81ngM8DngP8C/tNa+4oxphh3u+VFx61nJbBz0OsvAp+y1m40xiQD3caY\nK4F5wGrAAI8ZYy4GGoC/BdZaa+uNMZmD1lMCXARsGdVPLSIySSiJFhGZmF631lYDGGNKgWdi03cA\nl8aebwAWG2P635NqjEm21rYPWk8BA22uATYC/2GMuQd42FpbEUuirwTeiC2TjEuqlwMPWmvrAay1\njYPWUwssfOcfU0RkclISLSIyMfUMeh4d9DrKwLHbB7zLWtt9mvV0AaH+F9babxljngSuATYaY96N\nq33+F2vtnYPfaIz5zGnWG4qtW0RkSlKbaBGRyesZXNMOAIwx555kmd3A3EHLzLHW7rDWfht4HVeb\n/DTwkVjzDowx04wxucDzwAdjI4pwXHOO+QxtJiIiMqUoiRYRmbz+AlgZ6/j3FvCJ4xew1u4B0vo7\nEAKfM8bsNMZsB3qB31hrnwHuBV4zxuwAHgJSrLW7gH8CXjLGbAP+Y9CqLwSeHbNPJiIywWmIOxGR\ns5wx5vNAm7X2x6O0vhXAX1prbx2N9YmITEaqiRYROfv9gKFtrN+pbODvRnF9IiKTjmqiRURERERG\nSDXRIiIiIiIjpCRaRERERGSElESLiIiIiIyQkmgRERERkRFSEi0iIiIiMkL/H6QMmS4QQLXnAAAA\nAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7f5b3c41f2d0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "NITER = 100\n",
    "res = numpy.zeros([NITER, 2001, 3])\n",
    "tpnt = numpy.arange(0.0, 2.001, 0.001)\n",
    "\n",
    "for i in range(0, NITER):\n",
    "    sim.reset()\n",
    "    sim.setCompConc('comp', 'molA', 31.4e-6)\n",
    "    sim.setCompConc('comp', 'molB', 22.3e-6)\n",
    "\n",
    "    for t in range(0, 2001):\n",
    "        sim.run(tpnt[t])\n",
    "        res[i, t, 0] = sim.getCompCount('comp', 'molA')\n",
    "        res[i, t, 1] = sim.getCompCount('comp', 'molB')\n",
    "        res[i, t, 2] = sim.getCompCount('comp', 'molC')\n",
    "res_mean = numpy.mean(res, 0)\n",
    "\n",
    "plt.figure(figsize=(12,7))\n",
    "# Plot mean number of molecules of 'molA' over the time range:\n",
    "plt.plot(tpnt, res_mean[:,0], label = 'A')\n",
    "# Plot mean number of molecules of 'molB' over the time range:\n",
    "plt.plot(tpnt, res_mean[:,1], label = 'B')\n",
    "# Plot mean number of molecules of 'molC' over the time range:\n",
    "plt.plot(tpnt, res_mean[:,2], label = 'C')\n",
    "\n",
    "plt.xlabel('Time (sec)')\n",
    "plt.ylabel('#molecules')\n",
    "plt.legend()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As you can see, the array that will be used to store the simulation results\n",
    "(array res) is now a three dimensional array, with the first dimension set to\n",
    "record 100 iterations. The loop that runs over all time points is now embedded\n",
    "in a loop that runs over the iterations. The solver object is reset and the initial\n",
    "conditions are set at the beginning of each iteration. Since we don't need\n",
    "any detailed control over which iteration starts with which RNG seed value,\n",
    "we initialize the RNG just once, prior to everything else. Once the 100 iterations\n",
    "are completed, we call NumPy's mean function to compute the mean over the first\n",
    "dimension, and then plot these mean values.\n",
    "\n",
    "## Controlling the simulation\n",
    "\n",
    "In the previous section, we paused the simulation at regular time intervals\n",
    "only to record the concentrations of various molecules. The only time we actively\n",
    "changed the simulation state was at t=0, to set the initial conditions. However,\n",
    "the function calls we used to set initial conditions can be called at any time\n",
    "during the simulation.\n",
    "\n",
    "As an example, let's interrupt our simulation at t=1sec to add 10 molecules\n",
    "of species molA. We plot the mean behaviour   of multiple (n = 100) iterations of our second order reaction, with an injection of 10 molecules of species A at t = 1.0.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.legend.Legend at 0x7f5aef628350>"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAGtCAYAAADQwSggAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd43eV9///nfZaOztE82sMatuS98MDYLLNiRglgkkBI\nICTwTbNK2rRJIWnTpE1TmtX0l7RkEUYIhB0SSBgu2xPbeFvekixZe2+dcf/+kC3seMm2jo5kvx7X\n5UvW0fl87rcMtl7nPu/7vo21FhERERERGTpHrAsQERERERlrFKJFRERERE6RQrSIiIiIyClSiBYR\nEREROUUK0SIiIiIip0ghWkRERETkFClEi4iIiIicIoVoEREREZFTpBAtIiIiInKKXLEuYCjS09Nt\nUVFRrMsQERERkbPcunXrGq21GSd73pgI0UVFRaxduzbWZYiIiIjIWc4YUzGU56mdQ0RERETkFClE\ni4iIiIicIoVoEREREZFTNCZ6okVERERkbAgGg1RVVdHb2xvrUk7I6/WSn5+P2+0+resVokVERERk\n2FRVVZGYmEhRURHGmFiXc0zWWpqamqiqqqK4uPi07qF2DhEREREZNr29vaSlpY3aAA1gjCEtLe2M\nZssVokVERERkWI3mAH3ImdaoEC0iIiIicooUokVERETkrPP73/8eYwxlZWVRub9CtIiIiIicdZ54\n4gkuuuginnjiiajcXyFaRERERM4qnZ2dvPvuuzz44IP87ne/i8oY2uJORERERKLi23/cyrYD7cN6\nz6m5SfzL9dNO+JwXXniBq6++mokTJ5KWlsa6deuYO3fusNahmWgREREROas88cQT3HrrrQDceuut\nUWnp0Ey0iIiIiETFyWaMo6G5uZnXX3+dzZs3Y4whHA5jjOH73//+sG69p5no4+jqC7G5qo1QOBLr\nUkRERERkiJ555hluv/12KioqKC8vZ//+/RQXF/POO+8M6zgK0cfx0qYarv/puxxoHd3nvouIiIjI\nB5544gluuummIx67+eabh72lQ+0cxzEu4AOgsrmbgjRfjKsRERERkaF44403jnrsnnvuGfZxNBN9\nHIeCc2Vzd4wrEREREZHRRiH6OHKSvHjdDnbXd8a6FBEREREZZRSij8PhMEzMSmRH3fDubSgiIiIi\nY59C9AlMykpkR21HrMsQERERkVFGIfoEJmUn0tjZT2NnX6xLEREREZFRRCH6BCZnJwGwU7PRIiIi\nInIYhegTmJidAECZQrSIiIjImOF0Opk9ezazZs1izpw5rFixYtjH0D7RJ5CREEfA71FftIiIiMgY\nEh8fz4YNGwB45ZVXuO+++3jrrbeGdQzNRJ+AMYZJWYmU1SlEi4iIiIxF7e3tpKamDvt9NRN9EpOy\nE3lq7X4iEYvDYWJdjoiIiMjY8ed7oXbz8N4zewZcc/8Jn9LT08Ps2bPp7e2lpqaG119/fXhrQDPR\nJzUpO5Hu/jBVLT2xLkVEREREhuBQO0dZWRkvv/wyd9xxB9baYR1DM9EnMSk7EYCy2vbBo8BFRERE\nZAhOMmM8EhYuXEhjYyMNDQ1kZmYO232jNhNtjPEaY9YYYzYaY7YaY7598PFiY8xqY8xuY8yTxhhP\ntGoYDhOzBkK0FheKiIiIjD1lZWWEw2HS0tKG9b7RnInuAy631nYaY9zAu8aYPwNfAf7LWvs7Y8zP\ngLuAB6JYxxlJiHMxLhCvxYUiIiIiY8ShnmgAay2PPPIITqdzWMeIWoi2A40nnQc/dR/8ZYHLgdsO\nPv4I8C1GcYiGgeO/deCKiIiIyNgQDoejPkZUFxYaY5zGmA1APfAasAdotdaGDj6lCsiLZg3DYXxG\nAhXN3UQiw9uQLiIiIiJjU1RDtLU2bK2dDeQD5wOTh3qtMeazxpi1xpi1DQ0NUatxKMYFfPSHItR3\n9MW0DhEREREZHUZkiztrbSvwBrAQSDHGHGojyQeqj3PNL6y186y18zIyMkaizOMqCAzsyrG/pTum\ndYiIiIjI6BDN3TkyjDEpB38fD1wFbGcgTH/k4NM+BbwQrRqGy6EQXdmkEC0iIiIi0d2dIwd4xBjj\nZCCsP2WtfdEYsw34nTHmO8D7wINRrGFY5KXE43IY9jR0nvzJIiIiInLWi+buHJuA847x+F4G+qPH\nDI/LwaTsRDZXt8W6FBEREREZBXTs9xDNGpfCxv2t2qFDREREZJSrra3l1ltvZcKECcydO5drr72W\nnTt3DusYCtFDNDs/hfbeEOVNXbEuRURERESOw1rLTTfdxOLFi9mzZw/r1q3jP/7jP6irqxvWcaLZ\nE31WmTUuBYCNVa2Mz0iIcTUiIiIicixvvPEGbrebz33uc4OPzZo1a9jHUYgeopLMBHweJxv3t3HT\nefmxLkdERERk1PvPNf9JWXPZsN5zcmAy/3j+Px7361u2bGHu3LnDOuaxqJ1jiJwOw4y8ZDbsb411\nKSIiIiISY5qJPgWzx6Xw0PJy+kMRPC69/hARERE5kRPNGEfLtGnTeOaZZ6I+jpLgKZg1LoX+cITt\nNe2xLkVEREREjuHyyy+nr6+PX/ziF4OPbdq0iXfeeWdYx1GIPgVTcpIA2FWvQ1dERERERiNjDM8/\n/zzLli1jwoQJTJs2jfvuu4/s7OxhHUftHKcgN8WLMVDVouO/RUREREar3NxcnnrqqaiOoZnoUxDn\ncpKT5GVfo/aKFhERETmXKUSfohn52qFDRERE5FynEH2KzitIpaKpm8bOvliXIiIiIjIqWWtjXcJJ\nnWmNCtGnaFb+wMmFWw9ohw4RERGRv+T1emlqahrVQdpaS1NTE16v97TvoYWFp2hCph+AvQ2dXDox\nI8bViIiIiIwu+fn5VFVV0dDQEOtSTsjr9ZKff/qnUCtEn6KMhDjSEzxsVF+0iIiIyFHcbjfFxcWx\nLiPq1M5xiowxLJyQzup9zbEuRURERERiRCH6NMzIS6KmrZfmrv5YlyIiIiIiMaAQfRqm5SYDsPVA\nW4wrEREREZFYUIg+DdNyB47/1g4dIiIiIucmhejTkOLzkJcSrxAtIiIico5SiD5N03KT2Fqtdg4R\nERGRc5FC9GmalpvMvqYuuvpCsS5FREREREaYQvRpmpabhLWwvUYtHSIiIiLnGoXo0zQtT4sLRURE\nRM5VCtGnKTvJS5rfwxb1RYuIiIiccxSiT5Mxhqm5SZqJFhERETkHKUSfgWm5yeyq76A/FIl1KSIi\nIiIyghSiz8C03CSCYcvOuo5YlyIiIiIiI0gh+gwcOrlwm1o6RERERM4pCtFnoCjNj9/jZMsBLS4U\nEREROZcoRJ8Bh8MwLTdZO3SIiIiInGMUos/Q9LxkttW0EwprcaGIiIjIuUIh+gzNyE+iNxhhd0Nn\nrEsRERERkRGiEH2GZuanALBxf2uMKxERERGRkaIQfYaK0/wkeV1sUIgWEREROWcoRJ8hh8MwryjA\ni5tq6OgNxrocERERERkBCtHD4O6LiunoDbF8d1OsSxERERGREaAQPQzmFQXwuh2s2qsQLSIiInIu\nUIgeBh6XgzkFqbxX3hzrUkRERERkBChED5PziwNsq2mnrUd90SIiIiJnO4XoYXLB+DSshbWajRYR\nERE56ylED5MZeckYA1uq22NdioiIiIhEmUL0MPHHuShO87P1QFusSxERERGRKFOIHkZTc5PYekAz\n0SIiIiJnO4XoYTS3MJXq1h72N3fHuhQRERERiSKF6GF0xeQsjIHn36+OdSkiIiIiEkVRC9HGmHHG\nmDeMMduMMVuNMV8++Pi3jDHVxpgNB39dG60aRlpBmo+JmYmsr2yJdSkiIiIiEkWuKN47BPy9tXa9\nMSYRWGeMee3g1/7LWvuDKI4dM/OKUnlufTWdfSES4qL5xysiIiIisRK1mWhrbY21dv3B33cA24G8\naI03WnxoWjY9wTCb9rfGuhQRERERiZIR6Yk2xhQB5wGrDz70JWPMJmPMr40xqce55rPGmLXGmLUN\nDQ0jUeawmHlwv+h3djfGuhQRERERiZKoh2hjTALwLPC31tp24AFgAjAbqAF+eKzrrLW/sNbOs9bO\ny8jIiHaZwybV72HxxAz+uPEA1tpYlyMiIiIiURDVEG2McTMQoH9rrX0OwFpbZ60NW2sjwC+B86NZ\nQyxcPjmTqpYe9jV2xboUEREREYmCaO7OYYAHge3W2h8d9njOYU+7CdgSrRpi5ZKJAzPnb+0cO20o\nIiIiIjJ00ZyJvhC4Hbj8L7az+54xZrMxZhNwGfB3UawhJgrT/BSn+3lzh0K0iIiIyNkoanuwWWvf\nBcwxvvSnaI05miyelMHjqyvp6Q8T73HGuhwRERERGUY6sTBKrpySRV8owq+X74t1KSIiIiIyzBSi\no2TRhDQmZSXyllo6RERERM46CtFRYoxhUUkam6pbCYYjsS5HRERERIaRQnQUzSsM0BuM8H6lTi8U\nEREROZsoREfR4kkZ+DxOnn+/KtaliIiIiMgwUoiOIn+ci8snZ/J6Wb1OLxQRERE5iyhER9mC8WnU\ntfexo64j1qWIiIiIyDBRiI6ya6dnYwy8urUu1qWIiIiIyDBRiI6ytIQ4JmUl8l55c6xLEREREZFh\nohA9AhYUB1hX0UJ/SFvdiYiIiJwNFKJHwMIJ6XT3h1lf2RLrUkRERERkGChEj4BFJWk4HYa3d+r0\nQhEREZGzgUL0CEjyuplTkMLbuxSiRURERM4GCtEj5JLSDLZUt1Pf0RvrUkRERETkDClEj5BrZmTj\nMPDQ8vJYlyIiIiIiZ0gheoSUZCaycEIay7Zpv2gRERGRsU4hegRdNimTXfWd7G/ujnUpIiIiInIG\nFKJH0BVTsgB4c0d9jCsRERERkTOhED2CitJ8JHpdbK/tiHUpIiIiInIGFKJHkDGGKdlJPPXeftp6\ngrEuR0REREROk0L0CPvylaWEIpY/bKiOdSkichb7yf/tYun/Lmd3fWesSxEROSspRI+wC0vSmZab\nxG9XV2KtjXU5InKW+t17+1lf2cqVP3qLps6+WJcjInLWUYg+nsbdsOoBCPYM+61vW1BAWW0H6ytb\nh/3eIiIAk7ITB3//0Z+vpK1bLWQiIsNJIfp4DrwPL98LLRXDfusbZ+eREOfit6uG/94iIgDWWmbk\nJfPgp+ZR3tjFrH99lSt/9Bb/8PRGNlW10tkXinWJIiJjmkL08aQWDXxsKR/2W/vjXNx0Xh4vbq6h\nuat/2O8vIgJgzMDWmv9z2xwWjk9jd30nz6yr4sM/Xc5lP3iT9ytbYl2iiMiYpRB9PIMhel9Ubv/J\nCwrpD0V4eu3+qNxfRM5th6+4uGZGDk989gL2fvdafnXHPP5j6QwAbvvlal7eUhObAkVExjiF6OPx\np0N8KtRvj8rtJ2UnMr8olcfXVBKJaIGhiAwva8H8xWMOh+HKqVl8/PwCXvqbiyhK93PP7zawqUrr\nM0RETpUr1gWMWsZA5jSo3xa1IT55QSFf/t0G/q+snqumZkVtHBE591gY+HfsODKTvPz27gVc/5N3\n+dSv1/DReeNYOD6NvY1dpCd4uGZ6DnsaOukLRfB7nNS19zExK4HMJC8A5Y1dpCV4SPS6j7hvW0+Q\nvlAYa2HV3iY27m8jzu2gpz/MtNwkLi7NACA72Rutb11EZEQoRJ9I1lTY8MTBKZ3j/zA6XVdPzyYv\nJZ6HV+xTiBaRYXeyf7UCfg+/vnM+3/7jVh5avo9fvL138GtfZsMxr0nze0j1e47Yf7oozUfEgsWy\nv/noHY1cDkPoL95xS/W5aekOsmRaFtfNzKWisYv8QDxXTsnC7XTgdTuH/o2KiMSAQvSJZE6F/g5o\nrYTUwmG/fZzLyeJJGfxh4wGC4Qhup7prRGR4DHUf+knZiTz+/y6gNxhm2fY62nqCpPnjWFfRTJLX\nzfiMBLr7Q1Q0dbOjroNIxNLVH2J6bi7vlbdQ3dpDQZqf3v4wzd39TM5O5K9m5hCKWCZmJTIzP5m8\nlHi6+8O8saOeZdvqeHd3Ex29A1vuvbK1jle21h1V16z8ZJ747AX4PMf+MRWJWDZVt7G3oZPpecnE\nu51kJMaxvqKFd3Y38qXLSvDHuY66pqs/xPLdjVgLF0/MICFOPwZF5PToX48TyZw68LF+W1RCNMBl\nkzL57epKXi+rZ8m07KiMISLnplN5A83rdvJXM3MHP796+tD+PeoNhoc0a+yPc/FXM3OPGGN/czc7\n6zrweVys3NtEKBzB6TC8vbOBjVVtzPjWq8zKT+amOfl09oYIRyKUZCbQ0NHHz97aS3Xr8ffxf2JN\nJeNSffQGw/jiXOyobac3GDniOTPzk3n40+cT8HtOWHs4Yqlt7yU32Ys5+IcaiVhae4I0dfaxal8z\n+xq6qGzu5p+um0JRuh+AnXUddPQGmZKTxN6GLsZn+I/7okBExh79bT6RzCkDH+u2wqRrojLEpZMG\nZkLe3NGgEC0iw2r4m9COdiZtF+MCPsYFfAAsnJA2+Pjff2gST75XyYPv7mN3fSf//PstR12bk+zl\ny1eUkupzs/VAO+srWyhO95OZ5GVBcYBXt9Wxo7aD3fWdlGYm8PHzC0jyuvF5nEzISKCiuZv7/7yd\ni/7zdfJT40nzx+GPczEjL5mbzssjFInwelk9VS09vLylltr2XvJS4mns7MMf5zru9qTLttcR53Lg\ncTno6D1yL+6A30NpZgIWmFeYyqxxKVxQnEayz33Me/2lSMTy8IpyXt5ai8thWDonnxl5yazc00iy\nz8303GRe3lKLBd7d1chVU7OYmpvE9LxkEuNcOBwj8X+EnAv6QxE2VrVSEPCRlXTurm9QiD4RbxIk\nF0Rthw4At9PBoglpvL2zAWvt4CyHiMiZGGI3x6h1y/wCbplfQH8oQl17L139IVwOB5XNXSTHe5g9\nLgXnCULhDbPzgBPPlM8vSuXOh95jZ10nSd5eLAMh+L+W7TzieReVpHPHokL+sOEA1a09zC9Koj8U\nYXN1G0vn5LF4UiZZSXF09IZ4d3cjrd39rNnXzJ2LipiVn8Laiha6+kLUtfdS1dJDU1cfa/Y1D95/\nTkEKiV43xkBTZz/7Gruw1tLVHybF5+a28wtYva+ZdRUf7Os9IcPPPzy98YR/hmvKPxijMM3H1Jwk\nitL9XD8zl2017TR29tHTHyYvNZ6PzRtHe2+QpIMLRUPhCPUdffx+QzUtXf3MKUhl8aRM4j1H/1nW\nd/SSkRAXtZ9fNW09PP9+NUvPy9eC1BHU2RfilS21zClMJdHr4u2dDby8pZb/K6snfNgaB4/TQcRa\nPC4Hdyws4m+vLGXNvmbW7GvmI3PzB9+ZAegLhYlznT3rHcxQ++Ziad68eXbt2rWxGfzxWwZ6or+w\nMmpDPLaqgn/6/RaWfeUSSjITT36BiMhJfOJXq+gNRnj284tiXcqo1hsMAx/MqO9v7ubpdVV09Aa5\nYnIW84tTB3/oW2sJhgfCwplo7w2yu76TVXubWLG7iZq2HmrbehmfkUBFUxfhiMUX56K7L0RX/0B9\nKT43vcEwn7+0hL++dDwep4MXN9fQ0tVPcrybOJeD1QdDS3G6H5/HSVVLD6v2NvHOrkb2NXaxrab9\niPBzuPzUeKpajt0e43YagmFLcrybb/7VVHKSvUQsLN/TyLqKlsEXBPMKU/nEBQXcdF7+Me8TDEd4\naVMN3f1hFowPUJzmpzsYprsvxJ6GLpwOQ8Ra3q9sZc2+JjZWtZHkdbG/pYdwxJLic3PeuBT8cS6y\nkrxsrhrY+eXSiRlcOyMHj8tBkteN22kwxmCtJWLB6TCEI5btNe2sLW/mnV2NXD09m6umZpHiO3Er\nz9mmtbuff35hK3/eXMPM/GTiPU4WTUjH73GS6vfwelk9af44Gjr7eKOs/qiTTbOTvJxXkMLLW2v5\n2ysm4nYZth5oBwsvbT72nvMz85OJczl4r3zgRWBpZgK3zB/HLfPHHbW7z2hhjFlnrZ130ucpRJ/E\nsm/Bip/A12vAFZ2/bPXtvSy6/3U+fWER37hualTGEJFzy22/XEV/KMIzCtGjnrWWcMTicjoIRywO\nA8YMBL/Og7Pbl0xMx+dxnXD2fSjjlNV2sLOug6I0Pyk+N+srW3htWx3Vrb209wSJdzvxeZzsqO1g\nUUkaf3fVRHJT4nl6bRWPriynoqn7iHsaM/CuR1GaDwtUNHVzXkEK183IYVddJ+9VNLOgOEBVSw+b\nqtpo6wkOqda8lHjae4J09IW4bkYOAb+HP2+ppT8UJtHrHuyHz0qKo669b/A6t9NgMFxcmk51aw9l\ntR0E/J7jtt8UBHxkJ3kpSPMxKSuROYUppPg8jE/3H3NmvaKpi+rWHqbnJXOgtQef20VZbTupfg+J\nXhfpCXGkJ8QN7T/ICdS09ZDodR+x8LWjNziknWvq2ntJ9XmOeLFnreWdXY18/rF1dPWHcTsNC4rT\nqGjuOuaOOgCTsxP58OxcEuNc9IctcwtTmZmXfNy2IGstf9pcy/uVLZRkJjApO5EVe5p4ZWstwbAl\n3u1gU1Ub6Qlx1Lb3Ygx849opLJ6UQW8wQk1bLw0dfcR7HFS39DCnIJULxqfFpA1JIXq4bHoanrsb\nPr8CsqZFbZgvPr6ed3c1svrrV2hrJxE5Y7f9chXBcISnP6cQLcOjvTfII8vL2V7bTn8owu0Li1g0\nIW1wZ6neYJiHV5TzxJrKwbCdEOfCWkuq30NOspcLxqcxKTuRP2+pxQAz8pLxxbmIczmIczlI9Lo4\nb1wqqcdY7Hl4y+OB1h76QxEKAj7e2tXAHzYcYHJ2Io2dfaza28zm6jYS41zMLkihvGkgKN4wO5dP\nLSoiPzWeFzfW8NLmGjp6g+xv7iEUiRAMf5CHnA5Dqs9DYZoPp8Nw03l5lDd18fO39h5V118qCPjo\n7g8RDFsWFAfoDUUIhSPcMn/cwNibakjze8hIjKOxs5/1FS1094dZOCGNvJR43tzZwB83HgAG2nYm\n5ySxp76TstqOwRctAJmJcUzOSWJmXjIlmQkUpft5dl0Vv1lVQVZSHJdPzmRqThJOh4PvvLSN7v4w\nOcle/vvW8zi/ODD4Z9rZF6KuvY+Kpi4yE71MzU2irSd40gW3pysSsTy6spxv/fHE53Dkp8bz9lcv\nU4g+UzEN0XVb4YFFsPRXMPOjURtmxe5GbvvVan7y8fO4flbuyS8QETmBj/9iFaGIQrSMvL5QmK0H\n2slO8pKbEh+T9T79oQh9B2etT8Zai7VQ3tTFc+ur8bgcbDvQTlVrN63dwSPaXMan+/mbK0rY39xD\nR2+Q8RkJlGYm0NUfpqsvxFs7GnhzZ/0Rs+M+j5PMxDjK/2IW/3CHh2NjYFJWIgG/hzX7molYy7Tc\ngW0cvR4nW6vbaOrq57yCFDZVtR3VohPvdlIQ8HGgrWdwcWtBwMfnF0/g6mnZx3yBEgvWWtZXtrBm\nXwupPje+OBdel4OidD/J8W5au4NMyo5Ni+tQQ7QWFp5MWik4XFE9uRDggvFpZCd5eWFDtUK0iJwx\ni8WMyP4cIkeKczmZU5A6+HksFsx7Du6QMhTGGIyB8RkJ/MOSSUd9vac/zHvlzWQkxjElJ+mE97p2\nRg4A6yqayUvx0dzVT1qChzS/h6fWVuFymIGduAw0dPTSG4wwKTsRl8PQ0NlHc1c/OcnxJMd/EP7D\nEXtUG09Hb5BEr5u2niBr9jVjGDgtND0xjksnDpwKGolYNlS1Ut/ey6UTj70oNJaMMcwtDDC3MHDM\nr4+FXT8Uok/G5RkI0lEO0Q6H4cOzc/n1u/to6eofNa8URWQMU4YWOWPxHieXHAymQ3UoGB6+m8ht\nCwqOeM7hQRkgM9FLZuLRwfFYffCHZtiT493HPfHY4TBHvJiR4acj8oYia2rUQzTADbNzCUXscVe4\niogM1Rjo1BMRGdMUoociMB7aqiA8tFXFp2tqThKTsxN5eEX5kI/sFRE5FosmokVEokkheihSi8BG\noG1/VIcxxnDHwiJ213eyvrLl5BeIiByPPbVjv0VE5NQoRA9FatHAx5aKqA+1ZFoWSV4XX3r8fYLh\nSNTHE5GzlxYWiohEj0L0UAyG6PKoD5WWEMf3PzqLmrZefvbmnqiPJyJnJ4tawkRGk+5gN/3hYx/6\nciYOtX+qDXTkaXeOoUjMBbcf6rePyHBLpmVz5ZRMHlpRzucWTxjcyF5EZKis2jlETllzbzN+t5+y\n5jL2d+ynpbeFPa17WF+/npS4FK4tvpaPTPwIPaEe4pxxuB3uI7bw29G8g5UHVvLw1odp62tjcmAy\nEwMTmZg6kQc2PgDA7IzZJMcl09jTSF+4D7/bT0FiAU29TTT1NJGbkMutk26lM9jJu9XvEowEmZUx\ni2x/NsFwkL1te1lds5olRUtYWbOSZRXLSHAn0BHsIM2bxjcu+Aad/Z2UNZex4sAKGnoauH3K7Xx8\nysdxO0bnMdtjlQ5bGaqHroVwP9y9bESGe2NHPZ9+6D2+umQSX7ysZETGFJGzx0ceWEGc28Fv774g\n1qXIWSQcCROyIfa07mFKYMpRe0C397fz/K7nebX8VZLjkpmSNgVrLQFvgExfJjMzZpLtz6asuYze\nUC/T0qbhdp5ZsOsN9VLVUUVRchGNPY1sbdrKm/vfJMGdwDXF17CpYRPl7eV8auqnGJc0DoCIjbCm\ndg3VHdXs79hPKBKirKWM1TWrjznGxNSJHOg8QGewk4A3QHNvMwBep5fxKePpDnbTFeyioafhuHUW\nJRVRmFTI8gPLSfIkkRafRlNP0+C9At4AWb4syprLTvmdpCxfFnMy5/Bm1Zv0hAYOh3EYBwWJBbid\nbna17MLv9nPb5Nv4m/P+JiZ7dx+uprOG76/9PuXt5exq2YXX6cVi8bv9lKaWYjBk+bL4zkXfiUl9\nMT9sxRgzDngUyGJgofgvrLX/bYwJAE8CRUA58DFr7ehfRZc3B1b/AkL9A3tHR9llkzK5uDSd77+y\ng6umZjExKzan9ojI2DT6p0dktNjetJ09bXtIcCfQE+oh1ZvKrpZdLMpdxPjk8RhjCEfC/Grzr/jp\nhp8OXpfoTuT6CdczK2MWYRumubeZn7z/E/rCfeT6c9nevJ13qt/BYRxE7AdrfJI8SbT3tw9+7nK4\n8Dq9eJzlT1P6AAAgAElEQVQeEtwJzMyYyeTAZDqDnXQHu7my8EpmpM/g6Z1P09LbQoI7gfX16+kM\ndnJh7oX8ce8f2dWy65jf22PbHxv8/ZM7nmR62nQ6g52Ut5cf9dwcfw6TA5OZmjaVSamTCHgDTEyd\nSF+4j9LUUiI2ws83/ZxdLbsoTi6msacRv9vPntY95CXkkehJJNGdyMLchZSklBCMBMnwZdDS20JH\nfwcTUibgMA6CkeARM8JtfW3Ud9cPfr2hu4FHtj5CMBLkmuJrKE4uZkfzDh4ve5yZGTOJc8YxM30m\ntd21lKaUUpRcdMS9Ht32KBOSJ3DpuEvxu/2EIiF+v/v3LKtYxi83/5Lndj3Hhyd8mHnZ86hsr2RH\nyw4auhvY17aPgDfA9PTptPa1sih3EUuKlgy+yBnKLHYwHKSxp5EMXwYuh4vO/k7e2P8GoUiIgDeA\nMYY9rXv4zbbf0NDTQGFSITeX3kx7fzvtfe3UddfR2d/Jgc4D+N1+wpEwTsfoOiTmcFGbiTbG5AA5\n1tr1xphEYB1wI3An0Gytvd8Ycy+Qaq39xxPda1TMRG99Hp6+Ez77JuSeNyJDLttWx92PrmV+UaqO\n7hWRU7L0f5fj87h47O4FsS5lzGnra6Mz2EmuPzeqM3bBSJD1deupaK/gQOcBJqRMoKK9AqfDidfp\npTvUzc7mnWxp3MJ146/DGMOtk24lJ2HgVDxrLRY7GMzquurIS8g7ouZwJExlRyVbGrdQ1lzGypqV\nNHY3ku3PJiku6bgzr4csyF7AuKRxPLPzGQBy/blk+DLY37GfrmAXfeG+I54/NW0q/7Tgn5iePp22\nvjbquuvIT8ynrquOjQ0beWrHU3QGO5mTNYcJyRPoDffSHexmX9s+HMaBxbKxYSONPY1D/nPM8mVR\nkFTAzPSZpMen43F6uKLgChp6Gniv9j2yfFmEbZh3q99lY8NGKtorKE0t5aLci7g4/2Jy/DmkxKWQ\n4EkY8phjUcRG+M223/Bf6/6LsA0PPh7wBvC5fKR6U9ncuPmo67xOL/2RfqanT+fKgiuZnTmbuu46\n5mfNx+P0sKd1D16Xl4e3Psx7te9R312P3+0nzhlHS2/LMWfVs/3ZfGHWF7hu/HV4nKPvcLmhzkSP\nWDuHMeYF4KcHfy221tYcDNpvWmuPPmfzMKMiRLdWwo9nwHU/hPl3j9iwDy3fx7f/uI1nP7/wuEdj\nioj8pZv+dzkJcS5+c5dC9PGEIiEe2PgAG+s3Mj97PiEboqy5jDf3vwlAmjeNxeMWc3nB5czLmscr\n5a/wwp4XuHvG3bgdbvrCfSzIWYDb4R4IgNbS1NtEa28r6+vXc0n+JWT7s2nobsDj9LCzZScHOg9Q\n0V7B65Wvs6dtaIvHfS4f3aFuAJzGydLSpUxMncjPNv6Mtr42XA4XiZ5EGnoamJk+k5LUEva07iEl\nLoUNDRto62sbvFe8K54lRUvY0byDpt4mmnuayfBl8PUFX2dD/QZCkRA5CTk09TTR0NPAiuoVtPe3\nMzVtKteNv46PTvzoUT3Aj257lCxfFlcWXsnkwGQc5szX8exv309lRyVel5fVNav59ZZf86XZX+Lq\n4qtxOVykx6dT0V5BOBJmfMr4Id83YiNUd1QPtnWciw50HqC8vZxEdyJel5eSlJKjXiyGIiGe2/Uc\nz+x8htmZs/G7/SyvXs725g/WhrkcLrAQsqHBx1LjUrl18q1sadzC2rq13FhyI9cUX4PH6WFd7TrK\n28u5qvAqLsi5IOYtJScyqkK0MaYIeBuYDlRaa1MOPm6AlkOf/8U1nwU+C1BQUDC3oiL628udkLXw\ng1Io/RDc+L8jNmx3f4hF97/O/KIAv7zjpP89RUSAsR+i2/raeK3iNQ50HmBXyy7a+9tp7GnEYkny\nJLGkaAlLS5cS74onFAmxo2UHTuPE6/JSnFzM1sat7GzZybq6dczLnsfCnIUkehKJd8Xjdrhp7m3m\nvnfuY2XNyiPGDXgDLClaQk+oh1U1q2jsaSQUCR3VknA4v9tPSlwK1Z3VRzzucXjI9GVS1Vl11DVe\np5fp6dMpTS1laelScvw5tPW1Ebbhwfv0hHooTCpkQvIEyloGFrr9eN2PB79emlrKpNRJrKldQ3p8\nOvkJ+aypXQNAa18rOf4cSlJKSIlLYUnREmZmzCQ5LvmUQm7ERghHwmfctyxnh+rOat6peoddLbs4\n0HWAiakTyfXnEiHChOQJTE+fjs/ti3WZZ2zUhGhjTALwFvDv1trnjDGth4dmY0yLtfaEh7uPiplo\ngMdvGdjm7osnfvtruP3otZ38f/+3i9f+7hJK1RstIkNw4/8sJ9E7dkJ0U08T8a54LJYdzTv4zCuf\nGXzLuTi5mK5gF+FImKLkIpp6mo7Z0zpUeQl5tPe30xfq494F9zIjfQbxrnjinHGkx6cPzLAd1B/u\n5839b7KhYQOXjbsMay0tfS3saN7BqppV5Phz2Nq0dTDY3jrpViYFJuFz+VhTu4auYBeFSYVUd1Yz\nL2se09OnY7FMDkw+7for2yvpC/cxPnn8MftFrbXsbNnJhJQJR3wvIjI0oyJEG2PcwIvAK9baHx18\nbAdjsZ0D4K3vwRvfhXsrwZs0YsM2dfZx6fffZHpeEr/77MIRG1dExq4b/mc5yfFuHv3M+UO+JhQZ\neFvWYRzUd9cPBkprLSEb4v269wnbMN2hbiYHJvNu1buUtZRxRcEV9IR6aO1rZWpgKiWpJfSGekmO\nSz7i/sFIkK7+Ll6rfI3+cD+PbH2Emq4aChILqOyoPKqer83/GrMzZjMjY8YR/b8A/1f5fzyx/Ql2\nt+4m1ZvKwtyF+Fw+nt/9PO197Xx1/lcpSSkh05dJc28zO1t20hPqoSvYxaqaVVhruXPanVxWcNkZ\n/CkfqbW3lRTvUW+sisgYMxp25zDAg8D2QwH6oD8AnwLuP/jxhWjVMOzy5gAWajZA8SUjNmxaQhz3\nXFHCd/9UxpbqNqbnJZ/8IhE55w2l4zAcCfNW1VusrlnNsspl1HfXE++KH9wmKyM+g55QD53BzuPe\n49Cis7+UGZ9JcXIxkwOTqemqYWXNSjr6O456XqJn4B22wqRCLh93OX63n/nZ85mTNeeD78WYI05g\nvKLgCq4ouOKoe33pvC9hrT2i3zI/MZ+ZGTMHP//crM8d93s5EwrQIueWaL7PcyFwO7DZGLPh4GNf\nZyA8P2WMuQuoAD4WxRqGV8bBt9+a9oxoiAa4ZV4B//PGHv7jz9t57K4Fo7ohX0RGgSG8y2it5d9W\n/RvP7nqWeFc8UwJT6Av3UZhYyJWFV1LWXAaAz+2jobuB4uRipgSmkOJN4Y3KN0j0JDI/e/7gll0O\n42B1zerBAL6ubh1r69ayqXETPaEeJgcmMy9rHnXddVxecDmz0mcR744nPT59WL91/fsoIiMhaiHa\nWvsux58IOXr6YCxIzAGHG1pHfpFjss/N311Zyrf+uI1Xt9WxZFr2iNcgImOH5cQnFlpreXTbozy7\n61numHoHfzvnb3E73UfN4h7Potxjb7u5IOfIHuyIjQzuXAEKuCJy9tB50qfC4YTUImjYEZPhP3lB\nIROzEvjOS9voDYZPfoGInLOsPf4sRjgS5nvvfY8frP0BF+ddzFfmfmVw94XhDrmHepiNMQrQInJW\n0bLdU5U/D3YvO/gTamR/ILicDv7l+ml84lerefDdfToOXERO6FBo7Qn1sLpmNW/uf5OXy1/GWkt3\nqJubS2/mGxd8Y1SfCCYiMlopRJ+q/Pmw8YmBre4CxSM+/IUl6XxoahY/fX03S6ZlU5J5dp+wJCKn\n59ApYT2hHj72x48dsSXcNUXXsDB3ITeV3hSj6kRExj6F6FOVM3vgY93WmIRogG/fMI0rfvgW//D0\nRp77/CIcDr1FKiJHshbCdPOJP32CivYKbpt8GzeW3EhJagluhw7OEBE5U+qJPlXpB1soGnfGrISc\n5Hjuvng8G/a3sqGqNWZ1iMjwsNZS21XL6ezbb62lK9g10KIRHDgaOhQJ0e+oZJO5l10tu/jORd/h\nvgX3MSVtigK0iMgw0Uz0qfImQ2ACVK48+XOj6K6Linngzd08vrqSOQUnPPBRZFBnfyedwU46+ztp\n7WvluV3PcX7O+QS8ATY3bubGkhvJ8ecc91jgtr42Ht76MFsat7C+bj03lNxAclwyle2VpMSl8NmZ\nnyXBk4Df7R+8JmIj7GvbR0+ohyRPEslxyUcdwnEmekO9eJwerLWsrlnN+vr11HXXcXHexeQl5lGc\nVIzF8l7te0xPn06aNy1qC9yae5tZW7t24OQ7XzqBuAA5CTlHPKcr2EVDdwOFSYU09TbxT8v/iZUH\nVg4eKT09bTpfmfcVpqZNpa67juXVy5mQMoFFuYuo765nc+NmuoPdNPY0sq9tHy+Xv0xfuI+JqRMp\nay6jNLWU2s5aOhIH9mNeWrqU68dfH5XvV0TkXBb1Y7+Hw6g5sfCQP9wD216Afywf8cWFh7v32U08\nva6KTf/yIfxxej0kR9rZshNrLc/teo63qt4CGDya+ESmp03nY5M+xocnfJiwDdPe305zbzPP7nyW\np3Y8RYQIcc64wb2AXcZFgieB1r4P3hUpSCzgoryLaOlt4dWKVwePb4aB3RouybuEr83/GnmJeayu\nWY3H6aEoqQiLHdwz2FrLW1Vv8dvtvyU/MR+v04vb6SbeFc/ElImsrVvLC3teoKO/g4A3QHNv8+D9\nD51uB+B2uPG5fbT1tQFwTfE1fGvht/C6vMd9sXC45t5mUuJSjvnc/e37CcQH+MOeP/D49sep6qgi\nZEODXzcYMn2Zgy8csn3ZrKxZSWNP4+BzXA4XN5fezJM7niTNm4bT4aS+u/6osbL92dR31w+G7UPm\nZc2jpqsGay2XF1zOzpadZPuzeXuzl3G+mTz+qRtO+j2KiMgHRsWx38Nl1IXo9x6El74Cf7sZUgpi\nVsbqvU3c8otVXDoxg0dO4WhfGXvCkTDv17/Pmto17GndQ6Yvk/0d+wlGgjiMg431G0mOS+aa4muo\n665je/N2drXsGrx+dsZsAt4ApamlZPmzaOxupKWvhbum38Xmxs0YY4h3xvOnfX9ide1qartqgYEA\nGowEAXAaJ4vHLebjkz/OgpwFdAe78bq8GAa2LtvdspsndzxJW38bPcEelh9Yjt/t5/KCy8lLyKMk\npYTGnkbW16/npb0vAQMn1FW0f7DvutM4ubr4ahq6G9jTuoem3iYyfZm09bXRF+7DYRxHhMiJqROZ\nkT6D/R372d60nXvm3MOHJ3yYjv4OllUuIyUuhXer36W9v52paVP51eZfDR5tnRKXwo0lN7KqZhUl\nKSXce/69NPU2Ya0lYiM8teMpNjZsZHvzdvxuP6UppczJmsPL+16moaeBmRkz2VC/YfAFwvS06czJ\nmkO8K57chFzCNkxNZw113XW09rWypXELzb3NTAlM4brx17GqZhVNPU3ce/69R5zM1x3s5pmdz/D9\ntd/nkvxLWFq6lD2te9jXto+CpALmZ82nM9hJgjuB6enT8bq8x/x/5uofv824gI9f3nHSnwMiInIY\nhehoqloLv7oCbnkMpsTubVJrLZ98cDUr9jSx8t4ryE4+9g9TGbu2Nm7llYpXeGjLQ0c87nF46I/0\nAwMzwRfnX0x1ZzU7W3bicriYmzmXYCTIxNSJfGb6Z45qKTgRay0/3fBT3q9/n/yEfKalTcPv8TMv\nax7Z/qEf8tMT6sHlcB2zB3dTwya+ufybpMenMytzFm19bfjcPsrbytnatBWv00tJSgnT0qdx+9Tb\niXfFU9FeQXp8Os29zXT2d5LqTT2inqEeErKqZhUrqlfw5/I/U9tVO/giINGTODhbfUhmfCZXF19N\nMBJkxYEVg4E/zhnHuMRxpMSlkBafRkZ8Bl+e8+XjBloYaDvZ1LCJuVlzR2RLuat//DYFAR+/UIgW\nETklCtHR1N8N/5EHF/8DXP6NmJZS3tjFkh+/zcIJaTx053wdZjDGNfc2s69tH4VJhfz0/Z/y7K5n\nAciIz+ATUz7BgpwFTEydSCgSYmvTVoqTi3EZFyneFAAauhsI2/Aphd1zVTgSpq2/jUR3IjtadnD/\nmvuZkzWHLF8W6+rW8cXZX6QoqeiowBuxEcI2POoX6ClEi4icnqGGaDXSng6PD9InQu2mWFdCUbqf\nr187hX/5w1YeWVHOnRfGZts9GbruYDdvV79NQ3cDOf4c5mfPp7m3ma+8+RX2tO4Z7OU1GG6bfBt3\nzbiLTF/mEffwOD3Mz55/1L0zfBkj8j2cDZwOJwFvAIDp6dN57NrHBr/2iSmfOO51DuMYUi91rMXg\nPCgRkXOKQvTpypkF+96JdRUA3H5BIcu21/HtF7cxIz+ZuYWBWJckf6E/3M9j2x9jTc0a1tatpS/c\nd9Rz4pxxLC1dSmlqKRvqN/DRiR/l/Bz1usvpM8c9+FtERM6UQvTpyp4Jm56EzgZIiO3sn8Nh+PEt\ns1l0/+t84/ktPPP5RSRot46YWl69nIe2PITP7WNXyy46gh209bWREZ/BzaU3c2XhlSR5knin+h0a\nuhsGd2gYnzIeOPFMqMhQHHpHQ0REokNJ63TlzBz4WLsRSq6MbS1AWkIc//uJOdz1yFqeXVfFpxYV\nxbqks0pjTyMHOg9QklJCf7gfv9tPMBLE5/YNPmdP6x5e2vsSq2tWs6lxoNUnOS6Ztr42xieP5/6L\n7+eivIuOuO+kwKQR/T7k3KF2DhGR6BpSiDbGXAhssNZ2GWM+CcwB/ttaW3GSS89e2TMGPtZsGhUh\nGuCKKVnMyk/mN6squGNhoRYZngFrLatrV/OFZV/AaZxY7DFbMAAC3gAZ8Rnsbt1N2IYpSiria/O/\nxg0lN5DkSSJiI2Oih1bOLhaFaBGRaBrqTPQDwCxjzCzg74FfAY8Cl0arsFEvPnVgj+hRsLjwcJ9a\nVMRXntrIa9vq+NA07dAwVJ39nUSIUNVRxQMbHmB17erBw0TCJszFeRczOTCZsuYypqZNZW3dWvxu\nP5saNtEV7KK5t5nrx1/PPXPuOWpnDAVoiRX1RIuIRM9QQ3TIWmuNMTcAP7XWPmiMuSuahY0JObMG\nZqJHkRtm53H/n8v49fJ9XDU1S7PRfyEYCWIwtPa1Eu+Kp6qjivvX3M/auqO3ULy66Gq+Nv9rpMen\nH/fP8dDexO397SR5kqJdvsiQjYXtS0VExrKhhugOY8x9wO3AxcYYBzC6N0kdCdmzYPsfobcdvKMj\nQDkdhi9dXsI3X9jK797bz8fPj92JiqOBtZaNDRvZ0riFl/a+xJamLcd83lWFV1GUVETAG+DScZeS\n48/B5Tj5X49D4VoBWkYbC2giWkQkeoYaom8BbgM+Y62tNcYUAN+PXlljxKHFhXVboHBRbGs5zCcX\nFPLixhq+/vxmUuLdXDNj6KfVnS3CkTAPb32Yt6veZn39emDgZL+ri64mJS6FeFc8bf1tVLZX8tez\n/poLci6IccUiw08ZWkQkeoYUog8G52eB0oMPNQLPR62qsSL7YIiu2TSqQrTDYfj57XO57Ver+fxv\n1/PSPRcxLTc51mVFRcRGeH7X8+xt28vicYvJ8mXR2tfKI1sf4dWKVwEoTS3lq/O+yrysebidegNF\nzhHq5hARiaqh7s7x/4DPAgFgApAH/Ay4InqljQGJ2eDPhJqNsa7kKKl+Dz++ZTZLfvw2n39sPW99\ndfFZ2R/9m22/4QdrfwDAo9sePeJrX5j1Be6cfifxrvhYlCYSUwO7c5x9f+dFREaLobZzfBE4H1gN\nYK3dZYzJPPEl5wBjDi4uHH0hGmBSdiL/7+JifvnOPp58bz+3juH+aGstIRtibe1allUsY3frbhp7\nGqnsqOTCvAv5+vlf59WKVylrLqMv1McXZn+BKWlTYl22SMxYa9XOISISRUMN0X3W2v5DsxrGGBd6\ns3BA7mzY8zoEe8A9+mY8v3LVJN7Z1cj3XtnBh2fn4vOMrfN1ekI9/OvKf+WV8lcIRoIAxLvimZA8\ngZKUEpaWLuVjkz5GoieRu2fcHeNqRUYXTUSLiETPUBPVW8aYrwPxxpirgC8Af4xeWWNIzmywYajd\nDOPOj3U1R4n3OPn3m6Zz8wMr+e9lu7jv2rEzO7urZRf/+d5/srpmNYVJhZyffT4X5l3IhbkX4nV5\nY12eyKimWQ4Rkegaaoi+F7gL2Az8NfAnBg5ckby5Ax+r1o7KEA0wtzDAh2fl8vO395If8HH7BYWx\nLumEmnqa+PfV/85rFa/hdXr55wv+mY9N+lisyxIZU6zV7hwiItE01N05IsAvD/6SwyXlQFIe7F8N\nC78Q62qO699unE5Ldz///PstPPjOXu67dgpLRuGJhpsaNvHd1d9la9NWAJ78qycZnzI+xlWJjE1a\nWCgiEj0nDNHGmM2c4F1Ba+3MYa9oLJpwOWx4HNoPQFJurKs5puR4Nw/dOZ8H3tzDD1/byeceW8fP\nPzl3VBwN/tLel1hTu4bXyl+jI9iBwzj47kXf5foJ18e6NJExy6qhQ0Qkqk42E/1XI1LFWLfgc/D+\nbwYWGJ73yVhXc1wup4O/uaKUz1xUzK2/WMXfPPE+f/ryxUzISIhJPXvb9vLinhf55eaBNzhmZsxk\nftZ8lpYupSBp7O4kIjIaqJ1DRCS6ThiirbUVI1XImJY1DXxpULFiVIfoQ/xxLh781Dwu/t4b3P/n\nMn7wkVkk+0b2EJKHtzzMD9f9EIDLxl3G38/7ewqTRnevtsiYoxQtIhI1Qz1spYMP2jo8gBvostYm\nRauwMcUYKFgIFctjXcmQZSZ5uW5GDs+9X81F33udhz89n7mFgaiPu6lhEw9teYhllcuIc8bxtflf\n06JBkSiw6uYQEYmqoS4sTDz0ezOwUuUG4IJoFTUmFV4IZS9CWxUk58e6miG5/+aZXD8rl79/eiMf\n/dlKvnhZCfdcUYrb6Rj2sXa37Oa+d++jrLkMgOvGX8e/Lfo3HcMtEkVGU9EiIlFzymnJDvg9sCQK\n9YxdRRcOfKxcFds6ToHH5eCyyZm88MULuXRiBj95fTcfeWAFT723n+7+0LCMYa3l+V3Pc9MfbmJn\ny07unnE3r978KvdffL8CtEgUWWt12IqISBQNtZ1j6WGfOoB5QG9UKhqrMqeC0zNwBPiMj8S6mlMy\nLuDj13fO57FVFfzzC1vZWLWJ7/55O3+652JyU07/FMaG7ga+9PqX2Na0jYA3wM+v+jmTA5OHsXIR\nORFlaBGR6BnqYSuH7zUWAsoZaOmQQ5xuyJwCtZtiXclpMcZw+8IirpuZy9Nr9/ODV3fwjec388An\n5+J1O0/5ft3Bbu5+9W4q2yu57/z7uKHkBvxufxQqF5FjUUu0iEh0DbUn+tPRLuSskDMLtv0BIhFw\nDH9f8UgI+D389aUTiPc4+eYLW/n0Q+/x0Kfnn1KQbu5t5q5X7mJv214+P+vz3DbltihWLCLHYi1q\n5xARiaIhJT1jzCPGmJTDPk81xvw6emWNUQULobcVajbEupIzdsfCIn70sVms3NvEh/7rbb70+Hqe\nWrufSOTE81vWWn628Wfsbt3Njxb/iC/MHr2nOIqc7bSwUEQkeoY6XTrTWtt66BNrbQtwXnRKGsMm\nXQPOONj8TKwrGRZL5+Tz89vn0tEb5MVNNXztmU189jfr6OkPH/P5feE+vrnimzxR9gQfmfgRriq8\naoQrFpFDdGKhiEh0DbUn2mGMST0YnjHGBE7h2nNHfCrkzIQD62NdybBZMi2bxZMycBrD157ZxHPv\nV/Pph9fw6GcW4HF98Brsx+t+zG+3/5becC+fmPIJ/nH+P8awahFRO4eISHQNNQj/EFhpjHn64Ocf\nBf49OiWNceMXw9s/gI46SMyKdTXDIs410A/9o1tmMz0vmX99cRv/+XIZ914zmZa+Rr65/JssP7Cc\nxfmLuW3KbSzMXRjjikXEohAtIhJNQ11Y+KgxZi1w+cGHllprt0WvrDGs5Cp4+/tQvQ4mXxvraobd\nZy4qZsuBNh58dx+vVv6B9oQniNgIn5n+Gb44+4t4nJ5Ylygig5SiRUSi5VS2kAgwcNT3T4EGY0xx\nlGoa27JngNsHZf9/e/cdJ1V1/3/8dbb3ZdnG0nuVIqAg2FDEjr0kmhhjNJrERJNoYvkm0ZjEmGh6\nftGoSayxxt5Q6QqySO+dXVjYyvY+5/fHGWCBBXZgZ+6W9/PxmMfO3LnlM2fvzn7mzOee867XkQTN\no1eN5vsXWUriXiSJYfzl9Ge4c9ydSqBF2hBN+y0iElwtHZ3j58BPgHv8iyKB54IVVLsWFQfDL4F1\n74Kv+Qvw2rvfZf+Of226h+TIdHLWXsHNT+bxxJxNNB5l5A4RCSXNWCgiEkwt7Ym+DJgOVAJYa3cC\nicEKqt0bOBWqS2DnEq8jaXVvb3qbZ1c/yyUDLmHG1W/x0Q/OY0i3RH793lruenUZK3eUeh2iiPgp\nhxYRCZ6WJtF11lqLfxIsY4ymnjuS/lMAAxs/9jqSVvVo9qPcO+9ehnUdxv0T7ycuMo7BmYm8c/tp\nXDO+F69/uYOL/jKPv3yywetQRTo9lXOIiARXS5Pol40xjwNdjDE3Ax8D/wxeWO1cfCr0GAcbZngd\nyXFbtGsR5792PiP/M5J/r/o34zLH8dS5TxETEXPAer+9chRL/u8czhmeyaMz1vPbD9Z6FLGIgEbn\nEBEJthYl0dba3wOvAq8BQ4CfWWv/cqRtjDFPG2PyjTErmyz7hTFmhzFmqf/W8Yav2GvQOW6EjtId\nXkdyzGbnzObmj26mor6CCd0m8MNxP+Sf0/5JYlTzlTwp8VH8v+vGcvnYHvxj9ibmbywMccQispe1\nVjMWiogEUYtH57DWzrDW3mWt/bG1tiVdrP8Gzmtm+R+stWP8t/daevx2Z9h0wMJnR/ys0Wa9s/kd\n7ph5B0O6DuH9y9/nyXOf5MYTbiQyLPKI20WEh3H3uUPJSorha08t5Ol5W0IUsYgcTD3RIiLBc8Qk\n2l8pj70AACAASURBVBhTbowpa+ZWbowpO9K21to5QHGrRtueZA6HfmfAtnleRxKQ+sZ63tz4Jg98\n9gCj0kfx5LQnSYhKCGgf3ZJjeP8Hp5OZFMPDH6zlrWU7qWvwBSliEWmOSqJFRILriEm0tTbRWpvU\nzC3RWpt0jMf8njFmub/cI+UY99E+9JoAu1dBbYXXkbTIB1s+YOxzY7l//v0YY3hw8oOHLd04muS4\nSF7+9ilkJEbz/ReXcM4fZpNTXNXKEYvI4Vir0TlERIKpxeUcxpjRxpjv+W+jjvF4/w8YAIwB8nDT\niR/ueLcYY7KNMdkFBQXHeDiP9ZkE1gebPvE6kiMqrinmvnn3cdecu+ib1JfvjP4O713+Hn2S+hzX\nfnt1jWP2XVO45/yhbCuq4uzHZvPk3M2UVNa1UuQiciRG9RwiIkHT0slWfgA8D2T4b88bY24P9GDW\n2t3W2kZrrQ83usfJR1j3CWvteGvt+PT09EAP1Tb0PQ0SMmH5y15H0iyf9bGiYAXXvHMNb216i6sG\nX8XLF7/MbWNuIy02rVWOER5muOX0/rzwrQmkJ0Tz0LtrOPGXM3jg7VX4NDmLSNBYjXEnIhJUES1c\n7yZggrW2EsAY81vgcyCgq+aMMVnW2jz/w8uAlUdav90Lj4AhF8DK19zshWHhXkd0gF8v/DUvrXuJ\nqLAo/nb23zi95+lBOY4xhkkD05hz9xRmrs3niTmb+df8rby3Io+fXzyCC0ZmBeW4Ip2ZUmgRkeBq\naTmHAZrOYd3IUcrtjDEv4hLtIcaYXGPMTcAjxpgVxpjlwBTgzmOIuX3pdzrUlsHWtnWBYWltKW9v\nepsJWRN49/J3g5ZANxUeZpg6PJOXbz2F284cwO6yWr7z/Jf83xsrKaupD/rxRToVq9E5RESCqaU9\n0f8CFhpj/ud/fCnw1JE2sNZ+pZnFR9ymQxpyPoRHwcYZ0P8Mr6MBoK6xjjtn3UldYx13jb+LbvHd\nQh7D3ecO4YzB6by2OJdnF2zj2QXbmDosgwn9UrlsbA/SEqJDHpNIR6NxokVEgqdFSbS19jFjzCzg\nVP+iG621S4IWVUcSGetmL9z2mdeRYK3llfWv8IfFf6CivoKHJj/EkK5DPInFGMPE/qlM7J/K8O5J\nfLapiBmrd/Pxmnx+99E6/vbVsZwzPNOT2EQ6ApVziIgEV0t7ogG2AA3+bYwxZqy19svghNXB9JkE\n8/4INWUQc6wjAx6f6oZqfjb/Z3yw9QOSopJ4cNKDXDLwEk9iOdiNk/tx4+R+NPoss9fn86t313Dz\nM9lERYQx88dn0qNLrNchirQ71lqVc4iIBFFLR+f4JbAc+DNuWLpHgd8HMa6Opf8UsI2wZY5nIfxu\n0e/4YOsHfHfMd5l37TwuG3SZZ7EcTniY4ayhmfznmyczoV9X6hp8XPTnubyzfKfXoYm0S8qhRUSC\np6U90VcDA6y1GuD3WPSaAFEJbrzoYReF/PBritbwyvpXuGrwVdw6+taQHz9QPVPi+O8tE/l8UxG/\n/WAt33thCf+av5VJA1I5bVA64/qkEB6m9EDkSFTOISISXC1NolcCXYD8IMbScUVEuTGjN37in0Ys\ndAlgfWM9Dy18iMTIRO4Yd0fIjnu89g6L98xNE7j9xSXMWV/A4m0l/OXTjaQlRDOyRxIZiTGM7dOF\nS8b0ICaybQ0fKOK1EL/ViIh0Oi1Non8DLDHGrARq9y601k4PSlQd0cCzYf37sHsldBsZssM+v+Z5\nlhcs567xd5EU5U099vFIjo3kmW+eTFVdA40+y8x1BXywMo/1uytYvK2El7Jz+GxTEfdfOJx5GwtY\nk1dOaVU9P5g6iO6qpZZOzGI1Y6GISBC1NIn+D/BbYAXgC144HdjwS+HjX8DCx+GSv4bkkNvLtvPo\n4kfJis/i+uHXh+SYwRIX5U7V6aO7M310d8BdOPXoR+v568yNvLn0wLrpl7JzeGD6CG6Y1DfUoYq0\nGUqhRUSCp6VJdJW19s9BjaSjS0iHgVNhw4yQfM9aVV/F/fPvB+ChyQ8RZlo6r077YYzhjqmDiI0K\nZ1NBBVOHZZKZFM2eqnr+NX8rP39rFQ+9u5qzhmbw/bMHMaJ7stchi4SMZv0WEQmulibRc40xvwHe\n4sByDg1xF4jB58LqNyBvKXQ/MWiHsdby49k/Zkn+Eh6c9CAnZ50ctGN5LSI8jO9OGXjI8tMGpfP7\nj9Yxc20+H67azYerdpMSF8nFo7uTEhdFXFQ4JVX1bCuq5NYzBjC6VxcPohcJHgvqihYRCaKWJtF7\nM76JTZZZ4KzWDaeDGzTN/dw8K6hJ9Nub32bujrncOe7ONjmUXShERYRx7wXD+Ml5Q/l0bT7Lcvbw\n5rIdPPP5tkPWfX/lLq6b0Jt+afGkJURz+uB0UuIiVU8q7Z5mLBQRCZ6WJtGfWmt/CWCMibHW1gQx\npo4rPg0SMiFnUdAO4bM+/rbkb4xKG8U3RnwjaMdpL8LDDOcMz+Sc4Zn8aNpg8striQoPI7ekmpT4\nSNbvLuc3763l+YXbD9guLiqcK8b25L4Lh7Vo5A83sYUSFmlDVM4hIhJUR0yijTE/AeYAVwC/9C/+\nDBgb5Lg6rl4nw5q3oWQbpPRp9d1/sv0Tdlbu5I5xd3TIOujjYYwhMykGgJT4KMCNSX3W0Ex2ldZQ\nUdtATnEVf/50A0u27+HZBdt4dsE20hKimDIkgxN7p/Dl9hJG9khm4ZYiEqIj+HL7HqpqG9hVVsON\nk/vxg6mDSIqJ9PJligB7R+fwOgoRkY7raD3Ra4GrgP7GmLn+x6nGmCHW2nVBj64jmvoArHkHljwH\nZ93X6rt/bvVz9EzoybQ+01p93x1Zt2SXXA/MSGDK0Ax8Psu7K/K4/cUlFFbU8criXF5ZnAvAq/6f\ne4WHGTISY3hq3haemreF8X1S+OqE3lwwMkvjV4tnrFVJtIhIMB0tid4D3Auc6b8NA6YBP/Un0pOC\nGl1HlDoABp0DS56FM+6G8Nbrtczelc2X+V/yo3E/IjxMydvxCAszXDy6Oxf7h9PbUljJ5oIKRnRP\npqqugeTYSKrqGumZEruvjCN7azGvL9nBZxsL+eHLy7jr1eX0SY2jqKKOIZmJ3HvhMMboAkYJIfVE\ni4gEz9GS6HOBnwEDgMeA5UCltfbGYAfWoY27Ef77FVj3PgxvnflqKusruf3T2+mZ0LPTXkwYTP3S\n4umXFn/AstSD1hnftyvj+3bFWsubS3fyj9mbSIiOIL+slqU5e7j0b/MZ2i2R807oxgUjs0iKieSz\nTYVsL64iMjyMy8f2ICtZE8RI61BJtIhIcB0xibbW3gtgjFkGPIurhU43xswDSqy1Fwc/xA5o8LmQ\n1BOyn2qVJNpay33z7qOivoI/TPkDydEaD9lLxhguPbEHl57YY9+yspp6/vbpRj7fXMSfPtnAHz/e\ncMh2j8/exPUT+zAsK4lFW4u5enwvTuih36UcG2utRucQEQmilo7O8aG1NhvINsbcZq091RiTFszA\nOrSwcBj3DZj5EBRtciUex+HtzW/zyfZP+M6Y7zAxa+LRN5CQS4qJ5J4LhgGQX1bDh6t3s7u0hqwu\nMZw5JIPdZTXc+uxi/j5r075tXvxiO9+bMohvndaP+OiW/qmK7KdyDhGR4DE2wGmtjDGjrbXLghRP\ns8aPH2+zs7NDecjgK98NfxgOE26Fc391zLvZVbmLy968jMEpg3n63KdVC92O+XyW3JJqVueV0T89\nnt9/uI6PVu8mzMDgzES+ObkfZwxJJz0hmkZr2VpYSY+UWMKM2XcBY0VtAz5rNUJIC+0dmnBTQQW/\neW8NJ/XtSrfkGBZtLeb2swbtG83lcNu1Zf3ueZfvTRnIj6YN8ToUEZF2xRiz2Fo7/mjrBdy9FeoE\nusNKzIShF/lH6bgfIo+tFvbhLx6mor6ChyY/pAS6nQsLM/ROjaN3ahwAj39tHDPX5fPByl28nJ3L\n3a8t37duanwURZV1ACRER3DhyCxySqpYsLmImMhwpgzJwGctw7KSuOGUviTHBZZU/2v+FrK3ldAr\nJY6RPZJJiIlgTM8uAe/ncNbvLuf+N1aSnhjNhH5dqaprxOAu4FyeW0pMZBhDuiVyQo9krh7fi8jw\nMIoqakmOjaS8poGq+ka6xEYeUw/9yh2lzN9YyBtLd7Imr4ykmAhqG3xY4OM1+fvWe27BdoZ2S+Ti\n0d2pa/Axd0MBW4uqqK5rJCEmggHpbnKe9MRousZFcduZA4gIP/ywkg2NPjYWVDAkMzEkCbhG5xAR\nCa6Ae6K90CF7ogG2zIH/XAznPwITvh3w5isKVvDV977K6PTRPHfBc0EIUNqK0up6Pt9UyGebili/\nu5ys5Fi2FFbS6LOEhRmW5ewhMSaCi0Zlsau0htV5ZewuqwUgKjyM0wenk5YQxZBuiWQlx1BQXktR\nZR03TurHut3lhBmIjQrnraU7mbexkFU7yw6JIS4qnEvGdOerJ/dhZM9kfP5j77VzTzUvZ+ewp6qe\nitoGPlq1i+S4SC4c2Z2eKbEMy0okv6yWL7YW8+zn22jw2QM+DOx12qA08stq2VxYQX2jZWBGApW1\nDeSV1pAQHUFNfSMNPkuYgVMGpDKmVxe2Flaxamcpd507lPNO6EZFTQOz1ueTEhfFrHUFlFbXM6pn\nMn+ftXFfu8REhnHRqO7M31jIoMxEHrliFLklVTT6LD4Lzy/cxpLte9ixpxpjoF9qPOP7pvD2sjyq\n6xsZnJnA+t0VB8R9yoBUUuOjyEiKobbex8491eSVVlNcWc+S7SVsLqzk1IFpXHZiD+ZvKqSgvJZ7\nLxjGsKykffupa/Dx7oqd/OzNVZx/QjdunNyPpTl7WL+7nP5p8Uzsn0ptg4/YqHD6psYTHtZ8qtz3\np+/y/bMH8cNzBh/7iSci0gm1tCdaSbSXrIUnzgQTBrfMDHjzh794mBfWvMDca+fqYsJOrr7RR7gx\n+5Jaay2fby6itt7H/5bsYObafCyu3KMpY9xp2FS/tHiuHNeTr5/Sh/pG6xLuilpeys7hzaU7iY4I\nIy0hmh17qomJDCMhOpKk2AhyS6qpa/ABkBQTwZlDMiipqmPuhsJD4h3XJ4WHLj2BgRkJvLcij+iI\ncAZlJmCtZWBGIgCNPsvrX+by9Pyt9O4aS1xUBJHhhrioCIZ0S2Th5iLeWLoTcAlxTb07dmJ0BD5r\nqaxr3He8qPAw6hrd86cPTudXl55ASnwUCUfpyfb5LJsKKuiZEkds1KHf9KzILSUtMYqXF+Xy78+2\nUFJVf8g6MZFhdImNoktcJGkJ0SzL2UN5k99DbGQ43zqtH3/5dCPDspKob/SxMb/ikP3ERoZTXd94\nyPLzRnRjZ2k11sK04Zms2VVGVnIsT83bwg/OHsSdSqJFRAKiJLq9+Oh+WPgE3LUBYlqeCFfVV3H6\nS6dzRs8zePTMR4MYoHQUPp9lx55qymsaKK+pp6Sqjhe/yGHSgFTSE6NZsn0Pl4zpzqieXYiKaL4s\nIb+shsdmrGd5bimr88o4b0Q3UuKj2FpYSdd4V9KQkRhNRpNa4vKaelbsKKWuwUdybCSp8dH7SlaO\nl7WWXWU1pMS5GSg/XLWLRVuL2VVaw8T+qQzKTGR4VhLGwKdr8xnZI5nBmYmH7b09XtuLqpixZjeJ\nMRGkxkfRvUvsAb3MAAXltWwvrmJE9yQKymv5zvNfsmJH6b7ne3WN5d7zh3FCj2R2l9Uwc10+gzMT\nmT66OxvyK/hyWwkVtQ0UlNeyqaCSj9fsBqBHl1h27KkmMymagvJafBYeuvQErp/Y+jOjioh0ZEqi\n24sdi+GfZ8H0v8DYr7d4s3+v/DePLn6Up899mpO6nRTEAEUk2Mpq6sktrmZwZsIR66qb09DoI7+8\nlm5JMezYU03PlFhqG3zsKq2hT2pcm78AUkSkrWlpEh3Yu7W0vu5jITELNn7S4k2Ka4p5YvkTDOwy\nkLEZY4MYnIiEQlJMJMO7JwWcQANEhIfRvUssYWGGXl1d0hwTGU7ftHgl0CIiQaQk2mvGwICzYfMs\n8B1a79ic3y36HTWNNfz61F9rRA4RERERDyiJbgsGngU1e2D7gqOuujR/Ke9sfocbRtzAsNRhIQhO\nRERERA6mJLotGHweRCdD9tNHXM1nffz2i9+SEZvBzSNvDlFwIiIiInIwJdFtQVQ8jPkqrH4TKgoO\nu9qbG99kZdFK7hh3B3GRrTO6gYiIiIgETkl0WzH26+Crh1X/a/bpqvoq/vTlnxidPpqL+l8U4uBE\nREREpCkl0W1F5nDIHAkrXm726bc2vUVRTRE/Gv8jXXEvIiIi4jEl0W3JqKsgdxEUbTpgcVldGX9f\n+ndGpo1kTPoYj4ITERERkb2URLclJ1wJGFjxygGLX173MiW1Jdw34T71QouIiIi0AUqi25LkHjBw\nKix8HBobAKhtrOX5Nc8zqfskRqSN8DhAEREREQEl0W3PiddDdTEsfwmAtze9TWF1ITeecKPHgYmI\niIjIXhFeByAHGXwepA2Gd3/EwpRMHvj8AYanDmdCtwleRyYiIiIifuqJbmsiY+Cq/4Cvnufm/xKA\n+yfcr1poERERkTZESXRblDmcRSMvZlZDMd8aeh0j00d6HZGIiIiINKEkuo16OS6KxEYft+7K8ToU\nERERETmIkug2aGHeQj7Y9TlXxfYkeslzsPY9r0MSERERkSaURLcxpbWl3D3nblKiU7jtjIchIhY+\nvBd8jV6HJiIiIiJ+SqLbmJk5MymuKebh0x8mpvuJcPkTULIF1rzldWgiIiIi4qckuo15Zd0r9Ejo\nwcSsiW7B0Auh6wCY90ew1tvgRERERARQEt2mbN6zmeWFy7lu2HWEGf+vJiwcJn8f8pbCho+8DVBE\nREREACXRbco7m98hzIRxfr/zD3xi1LWuN/qDe8Dn8yY4EREREdlHSXQbYa3lvS3vMTFrImmxaQc+\nGRkDU+6F4k2w/n1vAhQRERGRfZREtxHLCpaxo2IHF/a/sPkVhl8CqYNgxs+goS60wYmIiIjIAYKW\nRBtjnjbG5BtjVjZZ1tUYM8MYs8H/MyVYx29vXln/CnERcZzd++zmVwiPhPN+A0UbYeE/QhuciIiI\niBwgmD3R/wbOO2jZT4FPrLWDgE/8jzu9kpoSPtjyARcPuJj4yPjDrzjoHBg0DWY/AhX5oQtQRERE\nRA4QtCTaWjsHKD5o8SXAf/z3/wNcGqzjtyezcmZR56vjysFXHn3lc38DDTXwyQPBD0xEREREmhXq\nmuhMa22e//4uIDPEx2+T5u2YR0ZcBkNShhx95bSBMPFWWPIcbPwk+MGJiIiIyCE8u7DQWmuBw84e\nYoy5xRiTbYzJLigoCGFkodXoa2RB3gImdZ+EMaZlG025DxK7wxu3QX1NcAMUERERkUOEOonebYzJ\nAvD/PGxhr7X2CWvteGvt+PT09JAFGGoLdy2krK6MyT0mt3yjyFg4+2dQsRs2zwpabCIiIiLSvFAn\n0W8BN/jv3wC8GeLjtzkzt88kLiKOs3qdFdiGJ1wBMcnw+V+DE5iIiIiIHFYwh7h7EfgcGGKMyTXG\n3AQ8DJxjjNkATPU/7rQafA0syFvAsNRhRIVHBbZxRBRM/A5snQsF64IToIiIiIg0K5ijc3zFWptl\nrY201va01j5lrS2y1p5trR1krZ1qrT149I5OZXbObLaWbeWaIdcc2w5GXO5+vnzDkdcTERERkVal\nGQs99NK6l8iMy+ScPucc2w7SB8OEW6FgDeQubt3gREREROSwlER7ZFvZNj7P+5wrB19JRFjEse/o\nzHsgqQe8cSvUVbVegCIiIiJyWEqiPfLyupeJMBFcMeiK49tRbBe49O9QuB7euwvsYUcNFBEREZFW\noiTaAzUNNbyx8Q3O6n0W6XGtMHxf/zPh5G/D0udg5WvHvz8REREROSIl0R74cOuHlNWVHfsFhc05\n7zfQpQ+880MozW29/YqIiIjIIZREe+DV9a/SN6kvJ3U7qfV2GhYO178OdeWQ/XTr7VdEREREDqEk\nOsSWFSxjacFSrhx8Zcun+W6ptIEw+DxY/B9NBy4iIiISREqiQ+yvS/6KwTB9wPTgHOCU70JVoauP\nFhEREZGgUBIdQtZaVhetZvqA6aTEpATnIH1PhYwR8Pnfob46OMcQERER6eSURIdQXmUeZXVlDEsd\nFtwDnfsQFG+CD+/VkHciIiIiQaAkOoRm584GYFL3ScE90ICzYNyN7gLDmb8K7rFEREREOqHjmCpP\nAjUndw69E3vTL7lf8A924WNQswfm/A5S+sKJ1wf/mCIiIiKdhHqiQySnPIcFeQs4vefpoTlgWBic\n/4i7/8G90FAXmuOKiIiIdAJKokNkxrYZNPga+Nrwr4XuoAkZ8NVXoLYUPv5F6I4rIiIi0sEpiQ6R\nz3Z8xqCUQXRP6B7aAw86B4ZeBIv+CWU7Q3tsERERkQ5KSXQIVNVX8WX+l0zuPjn0BzcGzv0V+Brh\nrds1WoeIiIhIK1ASHQLZu7Op99VzSvdTvAkgpS+ceQ9s/Bhe+xbUlHoTh4iIiEgHoSQ6BBbkLSA6\nPJpxmeO8C+K0H8EZP4WVr8LDvWHGz9QrLSIiInKMlESHwOLdixmVPoro8GjvgggLgyn3wA3vQLdR\nMP9PMPPX3sUjIiIi0o4piQ6y0tpS1havZWzGWK9DcfqdBt+eA6O/AnMegc2zvY5IREREpN1REh1k\nn2z/BJ/1MaXXFK9D2c8YuOiPEJfqpgbfOt/riERERETaFSXRQbZo1yK6xnRleOpwr0M5UGQMTPo+\n7F4J/74APvsL+HxeRyUiIiLSLiiJDqKahhpm5cxicvfJGGO8DudQp94BP9kG3U+Ej+6HZ6ZDWZ7X\nUYmIiIi0eUqig2j+zvlU1Fdw8YCLvQ7l8GK7wE0fw9RfQM4X8NeT4L/XQW6215GJiIiItFlKooNo\naf5SIsMivR3ariXCI+DUO+HG9yEmCda+A09OhdzFXkcmIiIi0iYpiQ6iRbsWMTx1OFHhUV6H0jI9\nx8Gdq+Bbn0JcV/jft6Fkq9dRiYiIiLQ5SqKDZEn+ElYVrWJi1kSvQwmMMS6ZvvpZqCyAf12oRFpE\nRETkIEqig2Tm9plEhEVww4gbvA7l2PSdDDe8BbVl8KfR8OhQeOO7UL3H68hEREREPKckOkjm7pjL\nuIxxJEYleh3KscsaDbfOhUHToLEOlj4Hj58GxVu8jkxERETEU0qig2BX5S427tnIqT1O9TqU45fS\nF657Be7eDBf/CfbkwL8ugMoiryMTERER8YyS6CCYv8PNANghkuimxn0DvvkBVObDq99Qj7SIiIh0\nWkqig2DujrlkxGUwoMsAr0Npfb0nwnkPQ84iePwMKNnmdUQiIiIiIackupWV1ZUxK2cW0/pMa5uz\nFLaGk2+GW+eB9cEL18DK18Bar6MSERERCRkl0a1sddFqGm0jp/U4zetQgittIFzzrL+045tulsPq\nEq+jEhEREQkJJdGtbFbOLKLCojgh/QSvQwm+AVPgxxtgwm2w7l3498Ww8AnwNXodmYiIiEhQKYlu\nZYt3L2Zc5jiSopK8DiU0wsLh/Idh+l/AVw/v3wUvXA11VV5HJiIiIhI0SqJb0a7KXWwo2cDI9JFe\nhxJ6Y78O31kAUx+AjR/Dy1/zOiIRERGRoFES3Ypm58ym0TZyUf+LvA7FG8bAqXfA1F+4RHruo15H\nJCIiIhIUSqJb0ZKCJaTHptM3qa/XoXjr5Ftg8HnwyYPw+i1eRyMiIiLS6pREt6K1RWsZnjq84w5t\n11JR8XDtC9D/TFj+Erz7I9iz3euoRERERFqNkuhWUt1QzZayLQztOtTrUNqGsHC45jkYeTV8+Sz8\ncSSsftPrqERERERahZLoVrK2eC0+62NY6jCvQ2k7ohPhin/C9a+CCYOXv+7Gk179JjQ2eB2diIiI\nyDFTEt1KsndlAzA2Y6zHkbRB/U6He/PghCtgw0cumX56GlQVex2ZiIiIyDFREt1KFu9ezMAuA0mJ\nSfE6lLYpMgaufBp+sAxO+xHsWgGP9IP3f6JeaREREWl3lES3ggZfA0vylzAuc5zXobR9Sd3h7J/B\nFU+5xwv/AY8OgZWvQWO9t7GJiIiItJCS6FawonAFVQ1VjM8c73Uo7cfw6fB/RXD5P6GqEF79Jjw6\n1NVMb5gB1nodoYiIiMhhRXhxUGPMVqAcaAQarLXtOvt8ZtUzxEbEckr3U7wOpX0Jj4BRV0PqANg6\n311wuPYddzvtRzDlfgjT5zwRERFpezxJov2mWGsLPTx+q7DWkr07m2l9ppEcnex1OO1Tj3HuNvn7\nUF0Cb33fzXY491G4/nUYeLbXEYqIiIgcQN18xym3Ipc9tXsYlT7K61A6htgUV+Jx+l3u8XOXw5vf\ng9oKb+MSERERacKrJNoCHxljFhtj2vW80CsLVwIwMm2kx5F0IJExcNb9cPcWGPt1WPIs/G4g/OtC\n1ztduNHrCEVERKST86qc41Rr7Q5jTAYwwxiz1lo7p+kK/uT6FoDevXt7EWOLrC5aTVRYFANTBnod\nSscT1xUu+hN06Q2r3nBTh3/yoLtFJUJiJvSaAGf+1K0jIiIiEiLGejwKgjHmF0CFtfb3h1tn/Pjx\nNjs7O3RBBeCmD2+iqr6KFy960etQOofSXFjzDhSsgfLdsOlT6Nofzrgb1r4LBWuhvhqm3AsjLteF\niSIiIhIQY8zilgx6EfKeaGNMPBBmrS33358GPBjqOFqDtZY1RWs4r995XofSeST3hIm37n+86g14\n5QZ49cYD13vtJljzFpx6J3QbrWRaREREWpUX5RyZwP+MMXuP/4K19gMP4jhuuRW5lNeXMyx1mNeh\ndF4jLoWED6BwPQy/BMIiICwc5j4Gcx5xw+YBTH3AjU3dtb+38YqIiEiHEPIk2lq7GRgd6uMGw9ri\ntQAM66ok2lN9TnG3ps66D7qPgfUfwJfPwMc/d7fME1ytdWS8G06veJO7iHHcNzwJXURERNonxBry\n3gAAHIZJREFUL8eJbvfWFK0h3IQzKGWQ16FIc4Ze6G7TfgU7v4SlL0LOAqgsgIp83CAxwNs/gAX/\ncJO+JGTAwHPchYqpA91IISIiIiIHURJ9HNYWr6Vfcj+iw6O9DkWOJCYJ+p/pbntZC8ZAQy28/xN3\nUWLZDqgth+yn3To9xrnxqvudAVFxze+7shCiEyFvuev5Do8M7msRERGRNkFJ9HFYW7xWU323V64m\nHyKi4eI/wkV/cI+rS2DeH2DrXNixGF681i3v2h+6jYRdKyBrDGyd55Lzok3s69HuebKbdbH/FIhO\nCPlLEhERkdBREn2MCqsLKaguYGjXoV6HIq1hb1Id1xWm/dLdL9kKr3zDXaxYvmv/RYo1ZVBVCA01\nruwjuZcrA9k8E1663tVbj7oKTvkeJPVwiXl8mkvYRUREpENQEn2M1hStAVAS3ZGl9IVbZrn7DXVQ\nV+GS7MOpLoH1H8GW2a7+evG/9z8XHgVTfwFjb1AvtYiISAegJPoY7R2ZQ0l0JxERBRFHSKABYlNg\n9DXuNvkO+OJxVy+9ayVUFcGH97pb/zNh6EUusd7+OZTnufsTvg0Dp4bi1YiIiMhxUhJ9jNYUr6Fn\nQk8SoxK9DkXaovTBcOGj+x9b64bb2zIH1n8I7/14/3OJ3aFiN2z4CHqfAulDIXcRjP+mu+0tNRER\nEZE2Q0n0MVpTtEaTrEjLGQNDzne3c38N+atdD3TGcIjPgNoyeOcO2L7A9U4DvPtDWPO2u1ixz6mu\nN1yCx+fTzJYiItJiSqKPQXldObkVuVw+6HKvQ5H2yBjIHOFue8V1haufAV8jVO9xpSEL/gYzfu4u\nWAQYdS30GAt9TwUT5pLtjBHuwsceY6GuEnIWQkQM9J3szWsLhK/RzS55wDIf1Fe5oQKDfSFmRQEU\nrHEjr2xf4L4d6H0KJGa5tp10uyuvSchw69eUQvluF1dkLMSn61sCEZFOTEn0MVA9tARNWDjEp7r7\nk26H0V9xZSBzfgcrX4Xl/21+u9RBbhKZmj3ucUI38NW7nu5T73DD7h2csB5O9R54+/uwfSGk9HFD\n+kUnulruvqe2LHG0FgrWQnQSJPc49PlV/4PXvgVxadD9RDfaSVyam0GycD2YcDf5TfcT4eyfu21y\nFrqEt7LAxRifBn1Pg/CI/XHHdjlyXD4fZD8FGz9xH04aavY/l3kCbJ4NjbXga4A3boPwaOh/hhtP\nPDcb6iv3rx8W4T7sxGdAYiZc/k8X0+GU74Y1b8HIq/bH2dwHCRERaReMtdbrGI5q/PjxNjs72+sw\n9nl29bM8sugRZl49k7TYI/zTFGlNJdtgRzbkr4Wk7i7xrCxysypumet6s0+4Asp2wq7lLlHdKy7N\nPZ8xzA27V7HbTRRz5k9h22euZ7u+CjbPgp1LXBIZn+6SxIrdbhIa64O0ITDxVhh5tRsCMCreLU/I\ncDEs/AdUF7te8eLNgIFeJ0OXPu7YFfmulzdvqYup50mw/n0XY1SiK1mZcJsrdSlYB9vmuWTV19B8\nm0TGuSS/eDNU7IKTvw0nXueS3mX/hbhUV2teUwpZo2H1G267xO6Q3BPGft0l0xnDYPKd0Fjn2qKu\nEla97hL3DTOgaz+XZPc+Bda9B6W5LsHf28Y1eyAh0327EBnnhj7EQGmOm8SnqhhKtrh14zNcWc/m\nWe6C0wt+D2O+sr+N945VvvjfboSYgee4+AvXu1k0+052CXl8GnQb5doX3O8vKr4VTzgRkc7JGLPY\nWjv+qOspiQ7cPXPvYUHeAmZePdPrUEQOr7bCJYTLXnAXM1of7F7lkrW6isNvN+oaGH8T9J6wf1l9\nNSx9Hub/GfZsO/y2kfEuEe41EQZNdcnjytdd2QS4hDg+HUZd7UYwievq1mmohaSsQ/dXtMkl5il9\nISrBlVKER7mEdutclyiX57mkddv85mNK6ee23b3CPT7zXjcTZWvUP9fXuJg2fuyS3rzlULp9//Mx\nXVypTUwX94GkxzhY9CTsXuk+CJVsdev1Pc29HnC93421Bx4nLBL6neb2X1V44HPxGVCZDxgYMMX9\njpN6uOMOOBuGXnD8r1NEpBNREh0k1lqmvjKVEzNP5Pdn/N7rcESOTWMDlOXCilddqUd8mhsRZPgl\nR566vKEOVr7meqtzFrg67biuLtmNS4WTbmp++7pKV+IRFR/cOuI92yHnC9dTPOJSl2BGxbkyjpIt\nLqEO5sWDjQ1QvtP1nCd2d6UaB7eHte758Eioq4JPfwmbPnXlL+BKeM663/WUVxa5tk7t70pZGuuh\neItLsst3uQtUV77m1us9AbZ97n6WbIOdX7r99ZoIN76viyZFRFpISXSQFNcUc8ZLZ3DX+Lv4+oiv\nex2OiHQUrV0f3VALT5/rkvDT74Ip9+lCSBGRFmhpEq2uiQBtKXV1jX2T+3obiIh0LK19gWFENNz4\nAQy50F2Y+uxlsOR52JPTuscREemkNDpHgFYVrgI0MoeItAORMXDNs/D8VbDpk/3DJXYbCf3OgKkP\n7B/dREREAqJ3zwAtK1hGVnwWGXEZXociInJ0YeFw/WtulJVV/4MVr7ia7M//CjuXuiQ77ihT2ouI\nyCFUzhGgVUWrGJU+yuswRERazhhI7AYTb4ObP4Vvz4ELH4Ptn8F/prsLHEVEJCBKogNQ31hPXmUe\nfZP6eh2KiMjxOekmuOZ5N9ze6ze7UT+sdUMONh5mXO5AWQuFG9yoKWV5bthFEZEOQuUcAdhVtQuf\n9dEjoZkZ2ERE2puhF8DUX8DHP4e177gJcKoK3ZjWQy50k/aAG2e7PA/Sh7hJa2K7uklnYpIgfRjE\nJLtxyK3PDZXYUOPub/scGqr3Hy+2q5ukZucSl8RnnuDG+O42ys2wGR6lGRxFpN1QEh2A9SXrAeiX\n3M/jSEREWsmpd8DQC90MiqvfdONsd+ntZmyM6QJpA125R3meG2t7/QcHbr/m7UP3mdTD1V33OhnS\nBkPWKDcqyMYZ7gJHcCOG7BWdDLWl7v7g8yE6wV34OPZrgb8eX6ObJbJL78C3FREJgJLoAKwsXEmE\nidDIHCLSsaQNcreTbz7yeuW73SQxVUVuMpj81ZCbDSMud8uqiyF96OEvVDzrPlfikbvIzV752V8g\nfw2k9IGt89xMmrlfuH2teMVNEd/3NBh5pRv3uq4SEjPdpDOf/Rm+eNJNbhMWCf3PdMfYOMP9nHAr\nZAyH6EQ3Jfru1VBf6UpKtsx2PeWn/RhO+c7xt9/eyYR2r4Ke49WbLtJJaLKVAHzro29RVlvGyxe/\n7HUoIiIdi7XuFhbm6rKfuWR/OYkJc0lvWIQrNakqco/jMyAy9sCp6CNiIDIOqkuAJv/fImJdQh0Z\n63rHS3PddPQTbnXTsYdHurKVrNGQ4B99qb7G9WqvfM310A8+F6r3QGMdbPsMts2DjBHuw8TeY/U/\n0yXv4VFum9oySB3g6sL7THblLABDL/KXrwR4aVJNKWyZ63r6B0xxpTQNda5tjHFtZwxs/AQGTXXt\nJSIBaelkK+qJbiGf9bG6cDXn9zvf61BERDoeY/bPqBjXFW6Z7Xqs92yH3StcUlyR756PSXa934PP\n3b9NRb6bYGbv81XFbjr6zTOh3+nQ8+QDE9b6Gvjoflj4j0Nj6XcG1Fe7XvG9knvv7+VuKn8VdB/r\nYt7xpav33vaZS7QTs9yY3JtmQV25e66phG4uwR7/Tbd9fY3rNd+zzSXrJsw9P/h8NzV8zgJY8pzb\nN7hym6793H6jEl0JS/6qJm0aDl16QVwqDL/EfVjo0scta6jzt51xdevRic3/XiqLXKlN1/7NPx8q\n1mrGTa811MGWOa6kq2CtO0/3Xtdgfe6ahzFfdd8sgfvAF53UoX9v6oluoS2lW5j+xnQenPQglw26\nzNNYRESkFVjrykZKc1wZSn216/1e+oJLAHpNgMHnwZDzXRKZ8wVsnesShfAot31C+qH7ratypR1Z\noyEian8CWL7bHatok7uQMzfblaMEIqkHTLodMkfArN+6C0HDo1wv+o5sOOEK91xDDdSWw9b5bnlT\nPU+CgvX769BNGJz1f5Cz0H1YyRwBOxa7/e5c4nq941Jh5NXuQtTIGLdddYmrpZ/7GCT3con64GlH\n7/0+WkJcXQLbF7hjRye5D1Or34Ax18Pw6RAV7z6cbPvcXZDaf4qro2+J2nL3IWfg1M5bdrN1Hqz/\n0H1jEhkL/c9w395ERLsPn1XFLile+P9g6YvQ6yT3e9gyd/85A5DU0/0eSw+aBXXE5e782bPNfTNz\nwhXuG6Kt89y5P3w6jP6KuzC5jWppT7SS6BZ6e9Pb3DvvXv43/X8MTBnoaSwiIhJEe/8vBrsHzVoo\n3wXFm1yPe/pQKN7sklBfgyvR2DbfJZFjrnMXTQ67yPW0H25/zcXsa4S8Ze4DwqaZrtc+uYc7zrr3\nD02CmjrpZvcBIvspKNrolsV0gZo9za+fkOkS7eGXQtEGl7D2PsW9vtxFkP20q33vNRHSB7sPLnWV\nbihEEwZYKFx/4D73lvMcSWxX6DMJ4tNdMjj0IqgscPXv8RmuXQvXuxp8Xz2ER0PfU11JTEo/961B\nxjCIijvycdqzuip4/25Y8mwzTxr3Qayu/MDF4dGQOtB9+9FrAgy72LVzbZn7XYdFuPthEZD9L3c+\n7VjsRvKJSoCSrVCW28zhwtw5fdb/uesc4MCSruoSd5551IutJLqV/Xrhr3lz45t89pXPCO+sn15F\nRKTjqSlzI6/EpfprzdNdaUqvCQdOC7/mHXjnDpecgisPGXOdG92lrtIl2e/f7RKnw4lOdgnWjmzA\nuNKSqASX+EbEuLKSnie5W12l26b7GJfkbpnjet6jk91Fp/XVrqcz+2lY/z6k9HXlJwcngvsY1wPa\nWOtm6yzedOgqETGQNcb1dMelug8QYeEw6BzXQ/vuD90HgrQhbhbQ6ATIX+vKcaITXeLX11/7Xl3i\n9lW00SWaA89xveiFGyA+zW1TV+XKdGpKoc+pblneMpj1sItz8Pnum4GCtfDFP92FqxHRkDrIXSjb\nfaz7MLC3lGnXSpjziKv7H3qR+2DQUAOzH3G9z0Ub3PKRV7lRc4q3wK4V7sNc4Xr3u+8xzl13MPBs\n93sINJFt+mHOWv+3GY2uLY1x59bHv3BlWpHxLo7qPe6DWXmeP5mvcKUi357jyTcGSqJb2Vff/Sox\nETE8fe7TnsYhIiLiKWtdktNcHbW1sGGGm2I+rqtLIq3PJY3JPV3ZR1ScS3axbnlrxFNf7fbra3RJ\n/rL/unKBEZe7ZHnnUldWENtl/3Yl21yvfPEm19O6ayWseNkl0uV5Bx6jae97r4muVKGmzA0BmT7U\nJfy1/rr32rLm44yIgaTurlcc3KgyvvomKxiXZNcd46REmSNdYtpUWITbZ02pG4994m2uHMlrdZXu\nQ8Gu5ZCzCOJS3HkSnewSfxPmSqVOv8uT8JREt6J6Xz0Tnp/A9cOu54fjf+hZHCIiIhICdVWuN7Zw\nneut3TzLlb+MutoNu3i43tnKIjday+zfuotEM09w5RCZI1zva1iE6zmO7eIS+IYa1/OaMdyNGFOZ\n7z5ojLnO7W/Dh/tLKVL6uWS4ptSNGDP6Wjfp0eq33Aea2nI3ssyFj7mEf9cKN0pLeZ4bD77/maFp\nuw5ASXQryinP4YLXL9BFhSIiIiIdXEuT6AAHqOyccstdUXzPxJ4eRyIiIiIibYGS6BbIrXBJdK/E\nXh5HIiIiIiJtgZLoFsgtzyUiLIL02GbGAxURERGRTkdJdAtsK9tGz4SeGtpORERERAAl0S2yoWQD\ng1IGeR2GiIiIiLQRSqKPorqhmpzyHAZ1URItIiIiIo6S6KPYvGczFqupvkVERERkHyXRR7G+ZD2A\neqJFREREZB8l0UexYc8GYsJjNLydiIiIiOyjJPooNpRsoH+X/hqZQ0RERET2URJ9FBv3bFQph4iI\niIgcQEn0EZTUlFBYXajh7URERETkAEqij2BDyQZAFxWKiIiIyIGURB/Bhj3+JFo90SIiIiLShJLo\nI9hQsoEu0V1Ii03zOhQRERERaUOURB/Bhj0bGNhlIMYYr0MRERERkTbEkyTaGHOeMWadMWajMean\nXsRwND7rY2PJRpVyiIiIiMghQp5EG2PCgb8B5wPDga8YY4aHOo6jya/Kp6qhigHJA7wORURERETa\nGC96ok8GNlprN1tr64D/Apd4EMcR5ZbnAmimQhERERE5hBdJdA8gp8njXP+yNmVHxQ4Aeib29DgS\nEREREWlr2uyFhcaYW4wx2caY7IKCgpAf/7Sep/H41MfJSsgK+bFFREREpG3zIoneATStkejpX3YA\na+0T1trx1trx6enpIQtur64xXZnUYxKRYZEhP7aIiIiItG1eJNGLgEHGmH7GmCjgWuAtD+IQERER\nETkmEaE+oLW2wRjzPeBDIBx42lq7KtRxiIiIiIgcq5An0QDW2veA97w4toiIiIjI8WqzFxaKiIiI\niLRVSqJFRERERAKkJFpEREREJEBKokVEREREAqQkWkREREQkQEqiRUREREQCpCRaRERERCRASqJF\nRERERAKkJFpEREREJEBKokVEREREAqQkWkREREQkQEqiRUREREQCZKy1XsdwVMaYAmCbB4dOAwo9\nOG57pfYKnNosMGqvwKi9AqP2CozaKzBqr8B42V59rLXpR1upXSTRXjHGZFtrx3sdR3uh9gqc2iww\naq/AqL0Co/YKjNorMGqvwLSH9lI5h4iIiIhIgJREi4iIiIgESEn0kT3hdQDtjNorcGqzwKi9AqP2\nCozaKzBqr8CovQLT5ttLNdEiIiIiIgFST7SIiIiISIA6bRJtjDnPGLPOGLPRGPPTZp6PNsa85H9+\noTGmb5Pn7vEvX2eMOTeUcXulBe31Q2PMamPMcmPMJ8aYPk2eazTGLPXf3gpt5N5oQXt9wxhT0KRd\nvtXkuRuMMRv8txtCG7k3WtBef2jSVuuNMXuaPNcZz6+njTH5xpiVh3neGGP+7G/P5caYsU2e64zn\n19Ha6zp/O60wxnxmjBnd5Lmt/uVLjTHZoYvaOy1orzONMaVN/u5+1uS5I/4td0QtaK+7mrTVSv97\nVlf/c53x/OpljJnpzxlWGWN+0Mw67eM9zFrb6W5AOLAJ6A9EAcuA4Qet8x3gH/771wIv+e8P968f\nDfTz7yfc69fUBtprChDnv3/b3vbyP67w+jW0wfb6BvDXZrbtCmz2/0zx30/x+jV53V4HrX878HST\nx53q/PK/5tOBscDKwzx/AfA+YICJwEL/8k53frWwvSbtbQfg/L3t5X+8FUjz+jW0sfY6E3inmeUB\n/S13lNvR2uugdS8GPm3yuDOeX1nAWP/9RGB9M/8j28V7WGftiT4Z2Git3WytrQP+C1xy0DqXAP/x\n338VONsYY/zL/2utrbXWbgE2+vfXkR21vay1M621Vf6HC4CeIY6xLWnJ+XU45wIzrLXF1toSYAZw\nXpDibCsCba+vAC+GJLI2ylo7Byg+wiqXAM9YZwHQxRiTRec8v47aXtbaz/ztAXr/asn5dTjH897X\nbgXYXnr/sjbPWvul/345sAbocdBq7eI9rLMm0T2AnCaPczn0F7hvHWttA1AKpLZw244m0Nd8E+4T\n5F4xxphsY8wCY8ylwQiwjWlpe13h/5rqVWNMrwC37Uha/Jr9ZUL9gE+bLO5s51dLHK5NO+P5FaiD\n378s8JExZrEx5haPYmqLTjHGLDPGvG+MGeFfpvPrCIwxcbiE77Umizv1+WVcqeyJwMKDnmoX72ER\nXh1YOiZjzPXAeOCMJov7WGt3GGP6A58aY1ZYazd5E2Gb8TbworW21hjzbdy3Hmd5HFN7cC3wqrW2\nsckynV/SKowxU3BJ9KlNFp/qP78ygBnGmLX+nsfO7Evc312FMeYC4A1gkMcxtQcXA/OttU17rTvt\n+WWMScB9oLjDWlvmdTzHorP2RO8AejV53NO/rNl1jDERQDJQ1MJtO5oWvWZjzFTgPmC6tbZ273Jr\n7Q7/z83ALNynzo7sqO1lrS1q0kZPAuNaum0HFMhrvpaDvgrthOdXSxyuTTvj+dUixphRuL/FS6y1\nRXuXNzm/8oH/0fHL947KWltmra3w338PiDTGpKHz62iO9P7Vqc4vY0wkLoF+3lr7ejOrtIv3sM6a\nRC8CBhlj+hljonAn9sFX9b8F7L3q80rchQDWv/xa40bv6If79P1FiOL2ylHbyxhzIvA4LoHOb7I8\nxRgT7b+fBkwGVocscm+0pL2ymjycjqsJA/gQmOZvtxRgmn9ZR9aSv0eMMUNxF5J83mRZZzy/WuIt\n4Ov+K9wnAqXW2jw65/l1VMaY3sDrwNesteubLI83xiTuvY9rr2ZHYOhMjDHd/NcIYYw5GZdLFNHC\nv+XOyBiTjPuG9s0myzrl+eU/d54C1lhrHzvMau3iPaxTlnNYaxuMMd/DNXw47kr/VcaYB4Fsa+1b\nuF/ws8aYjbgLBq71b7vKGPMy7h91A/Ddg75a7nBa2F6/AxKAV/zvrduttdOBYcDjxhgf7o32YWtt\nh05yWthe3zfGTMedQ8W40Tqw1hYbY36J+2cE8OBBX/11OC1sL3B/g//1f5jdq9OdXwDGmBdxIySk\nGWNygZ8DkQDW2n8A7+Gubt8IVAE3+p/rdOcXtKi9foa75uXv/vevBmvteCAT+J9/WQTwgrX2g5C/\ngBBrQXtdCdxmjGkAqoFr/X+Xzf4te/ASQqoF7QVwGfCRtbayyaad8vzCdXZ8DVhhjFnqX3Yv0Bva\n13uYZiwUEREREQlQZy3nEBERERE5ZkqiRUREREQCpCRaRERERCRASqJFRERERAKkJFpEREREJEBK\nokVEREREAtQpx4kWEfGKMSYV+MT/sBvQCBT4H1dZaycF4ZgnAt+z1t7USvv7Hi7Wp1tjfyIi7ZHG\niRYR8Ygx5hdAhbX290E+zivAQ9baZa20vzhgvrVWU6yLSKelcg4RkTbCGFPh/3mmMWa2MeZNY8xm\nY8zDxpjrjDFfGGNWGGMG+NdLN8a8ZoxZ5L9NbmaficCovQm0MeYMY8xS/21Jk2mH7/LvY7kx5oEm\n23/dv2yZMeZZAGttFbDVP+WziEinpHIOEZG2aTRuWvNiYDPwpLX2ZGPMD4DbgTuAPwF/sNbOM8b0\nxk23POyg/YwHVjZ5/GPgu9ba+caYBKDGGDMNGAScDBjgLWPM6UARcD8wyVpbaIzp2mQ/2cBpwBet\n+qpFRNoJJdEiIm3TImttHoAxZhPwkX/5CmCK//5UYLgxZu82ScaYBGttRZP9ZLG/5hpgPvCYMeZ5\n4HVrba4/iZ4GLPGvk4BLqkcDr1hrCwGstcVN9pMPDD3+lyki0j4piRYRaZtqm9z3NXnsY/97dxgw\n0Vpbc4T9VAMxex9Yax82xrwLXADMN8aci+t9/o219vGmGxpjbj/CfmP8+xYR6ZRUEy0i0n59hCvt\nAMAYM6aZddYAA5usM8Bau8Ja+1tgEa43+UPgm/7yDowxPYwxGcCnwFX+EUU4qJxjMAeWiYiIdCpK\nokVE2q/vA+P9F/6tBm49eAVr7Vogee8FhMAdxpiVxpjlQD3wvrX2I+AF4HNjzArgVSDRWrsK+BUw\n2xizDHisya4nAzOC9spERNo4DXEnItLBGWPuBMqttU+20v5OBH5orf1aa+xPRKQ9Uk+0iEjH9/84\nsMb6eKUB/9eK+xMRaXfUEy0iIiIiEiD1RIuIiIiIBEhJtIiIiIhIgJREi4iIiIgESEm0iIiIiEiA\nlESLiIiIiATo/wPe/YjHGa2mpAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7f5b2c15d650>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "for i in range(NITER):\n",
    "    sim.reset()\n",
    "    sim.setCompConc('comp', 'molA', 31.4e-6)\n",
    "    sim.setCompConc('comp', 'molB', 22.3e-6)\n",
    "\n",
    "    for t in range(0,1001):\n",
    "        sim.run(tpnt[t])\n",
    "        res[i, t, 0] = sim.getCompCount('comp', 'molA')\n",
    "        res[i, t, 1] = sim.getCompCount('comp', 'molB')\n",
    "        res[i, t, 2] = sim.getCompCount('comp', 'molC')\n",
    "\n",
    "    # Add 10 molecules of species A\n",
    "    sim.setCompCount('comp', 'molA', sim.getCompCount('comp', 'molA') + 10)\n",
    "    for t in range(1001, 2001):\n",
    "        sim.run(tpnt[t])\n",
    "        res[i, t, 0] = sim.getCompCount('comp', 'molA')\n",
    "        res[i, t, 1] = sim.getCompCount('comp', 'molB')\n",
    "        res[i, t, 2] = sim.getCompCount('comp', 'molC')\n",
    "\n",
    "res_mean = numpy.mean(res, 0)\n",
    "\n",
    "plt.figure(figsize=(12,7))\n",
    "# Plot mean number of molecules of 'molA' over the time range:\n",
    "plt.plot(tpnt, res_mean[:,0], label = 'A')\n",
    "# Plot mean number of molecules of 'molB' over the time range:\n",
    "plt.plot(tpnt, res_mean[:,1], label = 'B')\n",
    "# Plot mean number of molecules of 'molC' over the time range:\n",
    "plt.plot(tpnt, res_mean[:,2], label = 'C')\n",
    "\n",
    "plt.xlabel('Time (sec)')\n",
    "plt.ylabel('#molecules')\n",
    "plt.legend()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "When you have to do these things regularly, you might want to encapsulate\n",
    "various parts of this code in separate functions to save yourself some coding time.\n",
    "\n",
    "Quite often, one does not want to simulate the sudden injection of molecules,\n",
    "but rather keep the concentration of some species constant at a controlled value.\n",
    "This means that any reaction involving the buffered molecule will still occur\n",
    "if the reactants are present in sufficiently large numbers, but the occurrence\n",
    "of this reaction will not actually change the amount of the buffered species\n",
    "that is present. The following code snippet shows how, during the time\n",
    "interval $0.1\\leq t<0.6$, the concentration of species `molA` is clamped to\n",
    "whatever its value was at $t=0.5$. We plot the result of a single iteration of the second order reaction, where the concentration of A is clamped during the interval $0.1\\leq t<0.6$\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.legend.Legend at 0x7f5aef5aab90>"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAGtCAYAAADQwSggAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcXFWZ//HvqbWTzr5vhIRAWGJMQsJmWCJuiLIJCqjI\nKIKKjjo/nQFcR3FhEx1HRGFQcVTAQSEgCLITVg0QSAKBJBAhIQnZ00m6az2/P6pudSfp6trurVtV\n9/N+vfrVtdy690lXpeqpc59zHmOtFQAAAIDyhfwOAAAAAGg2JNEAAABAhUiiAQAAgAqRRAMAAAAV\nIokGAAAAKkQSDQAAAFSIJBoAAACoEEk0AAAAUCGSaAAAAKBCEb8DKMeIESPspEmT/A4DAAAALe6Z\nZ57ZaK0dWWq7pkiiJ02apIULF/odBgAAAFqcMeaf5WxHOQcAAABQIZJoAAAAoEIk0QAAAECFmqIm\nGgAAAM0hlUpp9erV6urq8juUPrW1tWnChAmKRqNVPZ4kGgAAAK5ZvXq1Bg4cqEmTJskY43c4vbLW\natOmTVq9erUmT55c1T4o5wAAAIBrurq6NHz48IZNoCXJGKPhw4fXNFpOEg0AAABXNXIC7ag1RpJo\nAAAAoEIk0QAAAGg5t99+u4wxWrZsmSf7J4kGAABAy7npppt09NFH66abbvJk/yTRAAAAaCk7duzQ\nY489phtuuEE333yzJ8dgiTsAAAB44jt3LtWLb253dZ+HjBukb580rc9t5s+frxNOOEFTp07V8OHD\n9cwzz2j27NmuxsFINAAAAFrKTTfdpLPOOkuSdNZZZ3lS0sFINAAAADxRasTYC5s3b9aDDz6oxYsX\nyxijTCYjY4yuvPJKV5feI4kuYltnSuu29b4Ad8hI+40coHCo8ddABAAACJJbb71V55xzjn75y18W\nbjvuuOO0YMECHXvssa4dhyS6iAdeWq//98fni95/8fsP0mePm1LHiAAAAFDKTTfdpIsuumi3204/\n/XTddNNNJNH1cPjkYfr5xw7t9b5/u2WRNnQk6hwRAAAASnnooYf2uu2LX/yi68chiS5iwtD+mjC0\nf6/3ff22xUqms3WOCAAAAI2C1TmqEIuESKIBAAACjCS6CrFISMkMSTQAAEBQkURXIRYOKZHO+B0G\nAAAAfEISXYV4JEw5BwAAQICRRFchFgkpQRINAAAQWCTRVWBiIQAAQOMKh8OaOXOmZsyYoUMPPVRP\nPPGE68dgibsqxCMh7Uik/Q4DAAAAvejXr58WLVokSbr33nt1ySWX6JFHHnH1GIxEVyEeCem517eS\nSAMAADS47du3a+jQoa7vl5HoKgztH5Mk/fnZ1frEUZP8DQYAAKBR/fViad1id/c5Zrr0/sv63KSz\ns1MzZ85UV1eX1q5dqwcffNDdGMRIdFW+c8o0SVJHFyPRAAAAjcYp51i2bJnuuecefeITn5C11tVj\nMBJdhbZIWJKYXAgAANCXEiPG9XDUUUdp48aN2rBhg0aNGuXafhmJrkIoZBQNG5a5AwAAaHDLli1T\nJpPR8OHDXd0vI9FVouEKAABAY3JqoiXJWqsbb7xR4XDY1WOQRFcpFgkpmaH1NwAAQKPJ1CFHo5yj\nSrEwDVcAAACCiiS6SrT+BgAACC7PkmhjTJsx5u/GmOeNMUuNMd/J3z7ZGPO0MWaFMeYWY0zMqxi8\nROtvAACA4PJyJDoh6Xhr7QxJMyWdYIw5UtLlkn5srd1f0hZJ53kYg2fiJNEAAACB5VkSbXN25K9G\n8z9W0vGSbs3ffqOkU72KwUuxSEjL1nXojwvf8DsUAAAA1JmnNdHGmLAxZpGktyTdJ2mlpK3WWqfV\n32pJ44s89gJjzEJjzMINGzZ4GWZVDp04VG91dOnb85f6HQoAAADqzNMk2lqbsdbOlDRB0uGSDqrg\nsddZa+dYa+eMHDnSsxir9c0PHqLzj9lP6SwlHQAAAI1k3bp1OuusszRlyhTNnj1bJ554ol555RVX\nj1GX1TmstVslPSTpKElDjDHO+tQTJK2pRwxeiISM0ll3+7ADAACgetZanXbaaZo3b55WrlypZ555\nRj/84Q+1fv16V4/jWbMVY8xISSlr7VZjTD9J71FuUuFDks6QdLOkcyXN9yoGr4VCRtZK2axVKGT8\nDgcAACDwHnroIUWjUX32s58t3DZjxgzXj+Nlx8Kxkm40xoSVG/H+o7X2L8aYFyXdbIz5nqTnJN3g\nYQyeiuQT54y1CokkGgAAoKfL/365lm1e5uo+Dxp2kC46/KKi9y9ZskSzZ8929Zi98SyJtta+IGlW\nL7e/qlx9dNMLh3LVMJmsVdTdduwAAABoYF6ORLe8cL6inLpoAACAvfU1YuyVadOm6dZbby29YY1o\n+12DniPRAAAA8N/xxx+vRCKh6667rnDbCy+8oAULFrh6HJLoGoTzZdAk0QAAAI3BGKPbbrtN999/\nv6ZMmaJp06bpkksu0ZgxY1w9DuUcNQjn6zlYKxoAAKBxjBs3Tn/84x89PQYj0TVwVucghwYAAAgW\nkugahE0uiWYkGgAAIFhIomsQZiQaAABgL9Y2/nyxWmMkia6Bk0QzEg0AAJDT1tamTZs2NXQiba3V\npk2b1NbWVvU+mFhYAyeJZnUOAACAnAkTJmj16tXasGGD36H0qa2tTRMmTKj68STRNejZ9hsAAABS\nNBrV5MmT/Q7Dc5Rz1CDklHNkSKIBAACChCS6BhHKOQAAAAKJJLoGIco5AAAAAokkugaMRAMAAAQT\nSXQNwtREAwAABBJJdA2i4dyf77wb/6Fvz1/iczQAAACoF5LoGkwfP1j/evz+Gj4gpn+s2uJ3OAAA\nAKgTkugatEXD+sp7D9T08YOVzNC1EAAAIChIol0QC4eUTJNEAwAABAVJtAtikZAS6YzfYQAAAKBO\nSKJdEI+EGYkGAAAIEJJoF8QilHMAAAAECUm0C2KREBMLAQAAAoQk2gWxcEipjFWWzoUAAACBQBLt\nglgk92dkNBoAACAYIn4H0Ari+ST61Q07NahfRJFQSGMGt/kcFQAAKJe1Vm9u65K13WeV22MRDW2P\n+RgVGhlJtAucJPrEny4o3PaTM2fq1Fnj/QoJAABU4NpHVuqKe17e7baQkR7+6js1cXh/n6JCI6Oc\nwwVOOcfw9ph+cNp0SdLabV1+hgQAACqwdmuX2mNhXXHG23XFGW/X+cdMVtZKb3XweY7ekUS7wEmi\nxw/tpzMP20eSaL4CAEATSaQzGtAW0Ufm7KOPzNlH7zp4tCSxhC2KIol2QTwSLlwOh4zCIcN/OgAA\nmkgynS0MikndA2QJPs9RBEm0C2Lh3f+McZqvAADQVJKZ7G6DYnGSaJRAEu2Cnt9cnessdwcAQPNI\nprO7DYrFWb4WJZBEu2CvJDrMSDQAAM0ksWc5Rzg3Ks3nOYohiXZBbyPRnP4BAKB57JVEOyPRfJ6j\nCJJoF4SN2e06NdEAADSXZDpbKOGQepRzsNoWiiCJ9kAsEmYkGgCAJrJnEh2jJhol0LHQA0wsBADA\nf9ZaPfnqJnV0pUtuu2VXUpNGdHcmdJLopW9u171L18lIOnLKcA1qixbdx+ubdumlddslSQePGUSn\nwxZHEu2CMYPbJEnvmzZGkhQPh5RIcfoHAAA/vby+Qx+9/umyt393e7xwORIyGtwvqvmL3tT8RW9K\nki6cN0X/ccJBRR//xZuf06I3tkqSZuwzRPM/P7fKyNEMSKJdMHpQmxZ96z0a3C/37TQWCWlnsvS3\nXgAA4J1tu1KSpO+f9jbN3GdIye33HzWgcNkYo/v/33GFtt9nX/eUtnel+nz89s6Ujp06UtZardnS\nWUPkaAYk0S4Z0j9WuByPhLRlF+UcAAD4ySmtnDp6oKaNG1zx40cOjGvkwNzodP9YpOSiAYl0ViMH\nxGVl9eqGnZUHjKZCEu2BGKtzAADgO+ezeM/OwtUo57M9mXGWybPMjQoAkmgPsE40AAD+KyTREZeS\n6BKJsbPCh7WWwbQAIIn2AB0LAQDwX8LNJDocUiJVqpwjoxhJdGCQRHsgHmWJOwAA/OYksnEXkuhy\nPtu7R6JZXzoISKI9EAuH+QYKAIDPEhmXR6L7+GxPZ7LK2tx2VlIma5XOZBVxoR4bjcmzZ9YYs48x\n5iFjzIvGmKXGmC/lb/9PY8waY8yi/M+JXsXgFyYWAgDgv8JIdDhc875KfbYneyTsdDsMBi9HotOS\nvmKtfdYYM1DSM8aY+/L3/dhae5WHx/aVM/kgm7UKhYzf4QAAEEhuTiyMR0La2EcS7dRLx/LlHM7x\ne6yAixbjWRJtrV0raW3+cocx5iVJ4706XiNxaq+uvu+VvZLo4e0xfeKofWUMyTUAAF568tVNktxK\nosNav71LV9/3ihKpjDbvTGrskH6F+3cl0oXtrHJZ9DUPrdDpsyfooDGDaj4+Gk9daqKNMZMkzZL0\ntKS5kr5gjPmEpIXKjVZv6eUxF0i6QJImTpxYjzBdc8CoAYqEjH720Ipe73/ngaM0cXj/OkcFAECw\nrN6yS5IUduGs8MFjB+quxWv10weWF90mFglpv5HthcvXL3hNG3ck9eMzZ9Z8fDQeY51zDl4dwJgB\nkh6R9H1r7Z+NMaMlbZRkJV0qaay19lN97WPOnDl24cKFnsZZD3cvXqsLf/+s7v3ysTpwzEC/wwEA\noKXNu/IhvX3CEP307Fmu7nfSxXdJUsnP8/f9+FFNHtGuX5wz29Xjw1vGmGestXNKbefplFFjTFTS\nnyT93lr7Z0my1q631mastVlJ10s63MsYGonTMYlJhwAAeC+ZzrpSylFMqX2X06AFzcvL1TmMpBsk\nvWStvbrH7WN7bHaapCVexdBonP9siXTG50gAAGh93W24vVFOEs1nfuvysiZ6rqRzJC02xizK3/Y1\nSWcbY2YqV86xStJnPIyhoRSWvGEkGgAAzyXyzU+8EiuxBjQdjFubl6tzPCapt0r+u706ZqMrjERz\nagcAAM8lPC7niEdLj0Tv2pX27PjwF2106oiaaAAA6sNam2vD7WHHwJIj0ZG+uxyiuZFE11FblCQa\nAIB6SGVyq495WhNdIomO08G4pZFE11Es33aUb6UAAHjLWRUjHqm95XcxpboSMxLd2kii64iJhQAA\n1IebLb+rFWeJu5ZWl46FyIkV2oG/rLMP34fW3wAC4bK/LtOKt3YUvf/4g0bpo0c0V2dalOfFN7fr\npw8sVzprNaR/VN8/7W361WOr9Mw/92pU7DpnaTk/k+hYOKStu5L69I17N4zbd3h/feMDB5MLNDGS\n6Doa3C8qY6SNO5La3pXW4H5Rv0MCAE9lsla/eGSlRg6Ma+SA+F73v7Fll1Zv2UUS3aIeeGm97lm6\nThOG9tPqLZ06/5j9dP2CVyVJYwa1eX78mfsM0ayJQ1zf788/dmhZXwSOnTpSz7y+RW9u7dzt9k07\nE7r/pfX6f++ZqvY4qViz4pmro3DI6LsnT9M35y+lpANAIDjvdecdPVmfPW7KXvd/4Q/P6sW12+sd\nFuokmckqZKRvnzRN5/92oZLprJLprM48bB9984OH+B1e1U6cPlYnTh9bcrt3HTxa7zp49F63//rx\n1/SdO19UMp1V+97fLdEkqImuM2eCAx2MAARB4ZR6kVUMYpGQEikGFVqVs05zz469iXTG1xKLRtD9\n9+C138yC/Sr2AZMLAQSJ815XrCkFE69aWzKdVSwcKnQNTKSzSmWsp10Em4EzoEYu0NyC/Sr2QSGJ\n5kMDQAA4I21FR6Jpi9zSciPR4cJn345ErnsfI9FOLsBZ6WYW7FexD+haCCBInAGDYklTPBrm/bCF\nJdNZxSOhwmdfR1c+ifawi2AzcP79lHM0t2C/in1AHRSAIHHqnYudvo+FQ8wRaWGJdEbxSHc5R0dX\nSlLx10NQxCntbAnBfhX7gP84AIKkVNe4WCSkrJXSlLi1pGR+YqHz/O/Ij0R72UWwGZALtAaS6Dpj\nYiGAICnVNY55Iq0tmdl9dQ5qonN43beGYL+KfUA5B4AgKZlEM0+kpTmrczjP//YukmipRy7A8o5N\njWYrdeacwrr4zy/owWXrdcUZM3yOCPBHJmt19vVPafXmXXU7ZjhsdPmH3q537D+ipv1c9tdlumPR\nGpeiyvnA28fq6x+ovPnEts6UzrruKW3blXQljqOmjNC3Tjqk4n0eNWWEfvSR3d/PNnQk9PEbnpZU\nvAbWWfrufT95VOFe2h9HwiH9+MwZmr3vsLJjCYLL71mm+c/1/Rpsj0f02/MO19jB/TyL49xf/V3L\n13cUvX/jjqQOmzy08Pzfno+ZmuhcLvDvtz6vftFgl7YUM25IP936uXf4HUafSKLrbPKIdn3m2P10\n34vr9cgrG/wOB/BNR1dKf39ts2buM0QHjBrg+fEy1urPz67Rc29srTmJfjT/f3dujftxPLFykx59\nZaO+/oHKH/v6pl16ae12zd1/uMbVmCw98/oWPfLKW3pj86SK9uk8bk+vbdwpSTpk7CAdOGZgr489\n/qBR+ugRE5XqZSQ6lcnq9kVv6vk3tpFE72HB8g2yko4u8hrcuCOhh17eoJVv7fQsiU5nsnrklQ2a\nNm6QDhk7qOh2J04fq/Z4RF9971T9c9Mu9YuFNWdSsJ/PKSPbdcGx+2nLTne+/LaiYQNifodQEkl0\nnYVDRpeceLB2JTP6ywtv+h0O4Bvn9P0Zsyfo40fu6/nxstlcEu1G2UAyk9XMiUN05YfdOZP0rzc9\npyVrtlUZS25liwuOnaLjpo6sKY7/vGOp/vTs6kK52fnH7Kd5B44q+bjv3LlUtz6zeu/Y8vv5z5On\nFZ1INnZwP/3gtOm93rcrmdbti96kbrQXyXRWMyYUfw0uemOrHnp5g6frEDvPy0kzxvXa0n1PXzj+\nAM9iaTaRcEhfO/Fgv8NAjYJ9PsVH8QgNBhBsTqJWr9O6oZBRNGxcScicOk+31NJwpFQzk0rEo7k4\nCl0Gy1xBIVbk/cxJ4Kqtf6Veujhn1Yti6vG3S7r42gOaEa98n8RodYuAK9WEwwtudccrlcBUKhYJ\nVT3ZuNTEvUrEw7n3JWfd5nL36TzOWtt7bFUmWZFwSOGQIYnuRckkug6T2N187QHNiFe+T2KRkFIZ\nq2zWlt4YaEGlmnB4IZes1n5621m2yy25M1PVxZV0cUQ/FgnJWmlXMlPRPp3HpTK7v58lXEiyaMbS\nu1KvwXgdkmg3nl+gmfHK9wlrRCLofBmJdqmMKlfO4d6M+lrOTLn5dyys5VvhMmTF3s/cKNlx6zlr\nNYkSJUX16ElQ75IsoNHwyveJ8+bHetEIqu5T/fVb3ikeCbuWRDtLs7nBmSOxZzlEubE4+6iV877U\n4TTEKLMMw6md3vNv60ZslL71rtRrsB4d8dx87QHNiFe+T2j5iaDzo57SjYQsm7W5U+kuTyzMWild\nRXmXm6fUY/lkuKMrVdE+i416uvEc58o5eJ/syVqrRDqreDkj0R5+AfHjbBLQSHjl+6R70ge1fgim\nSievuSEWDtXcIcyLxKGWU+9urpDgxNFRaTlHuPf3MzcS/HgNky5blVN7Xs7qHF52xEuk8v+H63g2\nCWgkrBNdTDohJXf2fp8JSf2G1LR75/Tnph1JDYjzNKBxmFCXZLyf8Lo13w2v3hMLdybThWObUEIy\nFSQZ2Zi2d+b+Nm7G7SRDGzoSSlU4cri9s7JR4744/6bNOyt7bpxjb9yR1OB+0e7YnBHtGhL8WCSk\nnYnu50ySTLiz6v15KhuTtWHJ2Nz/I5cZhZXNxLQzWfoLaCQcUsjknoOtLnWz3NOW/H4ZiUZQkb0V\ns/Q26bbPFL//xKukw8+vevf9Y7kk+pRrHq96H4DbIgNfUL8Jf6jLsRIbj5f03sL/hXpoj4f1+IpN\nmvnd+xRuX6b+E39T0eOzyWHaufI/JEn9Y+69fbbn9zXvqoerenzIlL+mc59xxHP7uO25NRXt03nc\n6dc+sdd9sUhIkRqS6PZ4RA+/vEEzv3ufJCk65Cm1jb296v15yaYHasfyS9Q29lZFhzzrwQGMdr3x\nSWV2TpVU+jXYHovohsde0w2PveZ+LD3U8/8w0EhIoosZd6h0wuW933ffN6Utq2ra/bFTR+qHH5qu\nrhTlHGgcv3z+ce2U9NU5X1Uk5N3bw9X/+Lls2xZdedZMTRzW37Pj7OmbHzxET67cJEn61QvPaquk\nL876ovpHS8fwl+UPasmWv+sTR07U1DGD9MEZY12L6/3TxyiZyVY8Cu2YOKy/K6OB75gyQpd9aLo6\nU5mK9tnzcXuaPKK9ppi+c/I0/WPV5sL1/150r9I2oouO+GpN+3Xb/a89roUbFuj02aN098bNGhwZ\nq88deq5r++9IduiaRddowsgu/cvxhygSDumkGeP6fMy1H5+t5W91uBZDbwa2Rfts+Q20MpLoYkZO\nzf305pHLcuUeNWiLhnX24RNr2gfgtltWhLRT0jmHnKOQ8e4U7c/+8TtlwxmdMnO8Z8fozUFjBumg\nMbkP/PmvhbU1I5190NkaEBtQ8rFL127Qki1/14kzRurIyWNcjWtgW7Qurc9LaYuGdVYV70vVPq4c\nbxs/WG8bP7hw/YaXrHYopo8d/DFPjletNzZ3auGGBTr+kOH664K0BoRHuxrjlq4tumbRNRo5KKxP\nzp1c1mOOPmCEjj5ghGsxANgdhUzVCMelTG1JNNCIQiYj2ZCnCXRORCbk71mYUMhZxi1W1vYmP+Zg\nKqmhhutCoYwacfyn+/WRlgllZKy7MTqv05DP/28AdCOJrkYkVvNINNCITCgtufzh3+txbCR3LB8Z\nk0tGoqFoiS3z8n8Xv+MOOmPcT1BdYXN1wSaUUci4//8oFsol0cakXN0vgOqRRFcj0kYSjdZk0pIt\nM6mshY3IGJ+TUZOSshEZY8rb3EmK/I476EKp+rxGK5WPyZiUFHL//1EkFJG1xvczOAC6kURXIxyX\nMt4sGQT4yqQLI2pesjZSGAn2iwllZCsYLXS29T35DzhjMnV5jVbMeS2F0jKmstdWOYwxuX+3z/9v\nAHQjia4G5RxoVR58+PcqG/Z/RNekZW24/Fbb+cTN+h130Jl0fV6jlSok9hlPvoymM9lcos7rD2gY\nJNHVYCQarcqkZbP1GYm2ftd25utWne5vpWSzjEQ3hDq9RitVeH2E0pJJKetyjIl0Nvf/RtREA42C\nJLoakbiUdr8bFeC7/ChfNuttx8Js1v8RNatcEp0sc21mm0+SrEii/WSVLiSsjaTn68PK/dHyZJqR\naKDRNN47UTOIxKVXH5bSyVxpB+CS17a9pvW71vt2/M7sFslG9MjyDTW1ai4llQ5J8S4t27xMBw07\nyLPj7Glz12a9suUVSdKuzCbZbESPLd+ggW2lJ4Gt25ZLXl7cvFihUFYzRs0of2WPEtLZtJ7f8LxS\n2epGGUf1H6X9Bu9XcxxZm9ULG15QV6aron32fNyexraP1b6Dql8De2PnRq3YuqJwPWU7lM0O1uMr\nNla9Ty+s2ZI7O/nK1qWSsersMq7GuGVXUspGtCOzUU+tfUoREyn5Gnxj+xtas3ONazH0ZmB0oKaN\nmObpMYBGZcquB/TRnDlz7MKFC/0Oo9ut50lLbpU++BNpzif9jgYtImuzOvIPR6oz3elrHOkdB6rz\nDW9f17GR9yg+4mFJ0n1n3Kcx7e42LynmCw98QY+sfqRwPb1zsjpf/0xZjw3F16l9v58Urn//6O/r\n5CknuxLX3a/erYsWXFT149vCbXryo0/W3GXyqbVP6fy/nS9JiofjevKjT5b1ReHptU/r03/7dK/3\nDYwO1BMf3bsdeLk+fe+n9fS6p3e7LbX1UHWt/UjV+/SCiW7WgP2vKFzvWneKUluOcvUY/ff9ucL9\nXy9cv3TupTp1/1OLbj/vlnna1LXJ1Rh6M/+U+dpvSO1f4oBGYYx5xlo7p9R2jERX44TLckl05xa/\nI0ELyWQz6kx36vQDTtdJU07yKQarzp0j1C/sbRvfZOZQPd8xTb944RptT26vWxK9NbFV04ZP078f\n9u/KZq127RyufuHBpR8oyVqrLjNboWiHLnzgQm1LbHM1Lkn62fE/K6t7Yk9/fe2vuuXlW5TMJGtO\nop04jhl/jBasWaBkJllWEu087gdH/0DjBnS3op6/Yr5uW3GbMtmMwqHqaoS3JrZq1qhZ+tKhX5Ik\npTJZpXaNUTxcWztxL3Rqhgb0T6kraWWSE2t+Pvbaf/Zg9e+/WclsQp+9/7MlX4PbEtv0wf0+qDOm\nnuFqHI4lG5foqoVXaVvSvf8LQDMhia5G/+G536zQARelba5cYOKgiZo9erbP0Xgv/UaujCOVqd9E\nqWQmqZH9R9bw9x2urvx8iISLXUuT+YnKc8bMUXu0suRw2eZlhXj6R/vXFIfzXOw7aN9CEl1OPE78\nM0bO0MRB3e2/n3vrudz92aT6hfpVFVMym9S+/fZtkv8Tw+qw//0Kf+9kHxPcM9mM0jatiQO9ez/J\n2tx8Ajf/LwDNhImF1QiFpFCU1t9wVSabW/81bBpv5QEvOB3Y6vkBnMwkC8etltN+2c3kP5nNJUPV\nxObE01dCVS7nuXAS53KfG+fYe7ZQd/49tcSWzCTLbs0eFM7ZAed10xvnvmjYu8Y0br72gGZEEl2t\nSDw3sRBwScYGLIl2PoD7SATclszWnpCFTEgRE3E1bicJqeb0fyFRdSEeJ46BsYGSyv+iUPgSsMff\nNh6O5/ZT5YRJJyZnP8gxxigaivaZvDr3efm3Kzy/dTybBDQSkuhqhWOMRMNVhSS6ytrRZuPHKJZb\no5qxcMzVuJPZXKJYbgvyntxMZJxkd0B0QCGuchRGovcYSXfjOU5my6vLDpp4ON7n39V5Lms989IX\nN7/AAc2IJLparBUNlzn1hUEbia53TbQbSUUsHHO9JrrauJzT9W7E4yRl7bH23a6X+7g9v6A4sVHO\n4b5SX+Sc14OXfzs3X3tAMyKJrhblHHBZOpubWBiYJNqHUSw3yjmkXOy1lCjsKZlJVl276mo5R34f\n/SP9K9pnof52jxFjN+reU5kUSXQvoqFo3zXRmTrURLtQ8w40M8+SaGPMPsaYh4wxLxpjlhpjvpS/\nfZgx5j4+F4LdAAAgAElEQVRjzPL876FexeCpcJxyDrjKKecImWB8t23mco5ouO961ErVEpebf0dn\nRLwt3FbRPp3H7VmOUmtNdNZmlbZpkuhelBqJrmtNtItfKIFm4uWndVrSV6y1h0g6UtLnjTGHSLpY\n0gPW2gMkPZC/3nwiMUai4apsNlfO4fbaso2q3hMLrbVKZd0Z1fSiJrracg43y2KcZL7SfRb7ElBr\nOUexWmuUPhtSl5poVudAwHn2aW2tXStpbf5yhzHmJUnjJZ0iaV5+sxslPSyp+lZdfgnHpU3LpVf+\nJk19r9/RoAU460QHrZzjsdWPaVdql+fHc8plXKmJDsX06rZXdePSG2velySt2Lqi+pHo/L/nnlX3\naPnW5TXFsWTjEsXCsULyW+4+nccVi+3ml2/WzFEzez3L0pHs0B0r7yg8Pz3Vo663WcXCMa3curLo\na3B1x2pJ3pZzOPt+et3TfZ5BO3LskTpw2IG675/36c0db6ot3KZTDzg10KuuWGt1+4rbtT253e9Q\nGtaA6ACdPvV0v8PoU12GvIwxkyTNkvS0pNH5BFuS1kkaXeQxF0i6QJImTpzY2yb+GnGA9PxN0q2f\nlL62xu9o0AKciYWhUDDKOdpj7RrRb4QefONBPfjGg3U7bs9mINWaNHiS7l11r65aeJULEeW8a+K7\nqnrc6PbR6hfpp9tW3OZKHLNGzdLo/pXvc9aoWXvdNnbAWEm5roqfetundNCwg/ba5v5/3q/L/n5Z\n0f0aGU0c2ICfAT6bNGiS/rrqr32+BqOhqMa2j/UshoiJaPyA8Xp8zeN6fM3jRbebO26ufvzOH+sr\nD39FVlaSNH7geB09/mjPYmt0q7av0ree+JbfYTS0CQMmkEQbYwZI+pOkL1trt/esmbPWWmOM7e1x\n1trrJF0nSXPmzOl1G1+dem2uc+HTv/Q7ErQIZyQuYoJRzhENRfW3M/5W11PBIRNSv0h1nfN6uuLY\nK/Sdd3zHhYi6VRvXiH4j9NhZj7lWl9oWblM4FK54n04ddU/jB4zXz47/mb7w4BfUme7s9XG70rmz\nEPecfo+GxIfsdb9bz1mruezYy/Ttd3y7z20ioYino73GGP3ltL/0OXH0wvsvVGe6U4l0QlZWJ085\nWXesvKPo6yEonNf9lcdeqWMmHONzNI3JqPIlP+vN009rY0xUuQT699baP+dvXm+MGWutXWuMGSvp\nLS9j8IwxUrS/1MspSKAahZHogEwslHKJdDOuARwyoYrbc3upZx1zo+3T+TsV+7Lk3D40PrTmtuVB\n0iivwUgo0uc8jn7RftrWta0w98H5ohT0OmpnvsHA2MCGeB5RHS9X5zCSbpD0krX26h533SHp3Pzl\ncyXN9yoGz4XCkqyUnxAG1MJZnSMoEwsRDKUmn9VjKTb4JxaKKZlNFp7nAbF8I5+AJ9HF1lZHc/Hy\n03qupHMkLTbGLMrf9jVJl0n6ozHmPEn/lPQRD2PwltNZzmbEktuoVdDWiUYwlFqFJZlNysgEpowp\naJyVbJzn3+mGGfRl8Zy/B0l0c/NydY7HpKIFLdXNoGk0TrKTTUuMoqBGQSznQOsr1ZDDaaZSTctz\nND5nKb7CSHQ+iQ56l8PCyjMs39jU+LSuhXPaPZvxNw60BMo50IpKlnO41EUSjakwEk05x26cmmhe\n+82NJLoWoR4j0UCNgtaxEMFQqpwjkUkwGtfCYuGYEplEIWkuTDStU5OlRlUo5+C139T4tK4FI9Fw\nUSb/OqImGq2kVDmHW63Y0ZgK5Rz5pLEt3KaIibjSYbOZMaG2NZBE12K3iYVAbZyRaJJotJJS5RxO\nTTRa057lHE5HTGqi6cbZCii+rIWhnMMPd716lxasWVD29lOHTtWn3vapqo71i+d/oVXbV1X12Eqt\n37lekhQOkUSjdThJwl2v3qWXt7y81/3PbXhOA2MD6x0W6iQWjiljM/r1kl8XrsfDcT26+lFt6trk\n/fFDMV0480KNaR/j6n6XbFyiFVtX6NT9T+1zu6Ubl+p3L/2u0KnR8erWVyUp0K3PWwFJdC0o5/DF\njUtv1KrtqzSi34iS225NbNW9r91bVRKdyqR0zaJrNDg+WINig6oJtWKHDD9E4weMr8uxgHqIhCKa\nN2GeVm5bqRc2vLDX/dFQVMeMp2Nbq5o1apYmDZqkDZ0bNH3EdI0fMF7z9pmnZ9Y/0+vrwU2ZbEZv\n7nxTM0bOcL199Nl3nS1JJZPoO1+9U3e9epcmDJyw133vGPcOunE2OZLoWjCx0BeJTEJHjz9aV8+7\nuuS21y66Vj9//ufK2mzFE/acGr7zp5+vc6edW2JrAMX897v+2+8Q4JMjxh6hO0+7c7fbLp17aV2O\nvblrs4675ThfJzEmMgkNaxumuz90t28xwDvURNeCkWhfVDIRyZm0Uc1ySoWJH03YlhoAgq7UpNZ6\nYOJsayOJrgUTC32RzCTLXhao8CZaxUgEEz8AoHmVmtTqBmttn/czcba1kUTXgomFvqikOUMtb6Is\nhg8Azcs5i+hlOUep9uXJbJKzmS2MJLoWhXIOkuh6quT0mDPzuapyDhbDB4CmZYxRNBT1dCS61L4T\nmQQrcLSwspJoY8xcY0x7/vLHjTFXG2P29Ta0JlCYWEg5Rz0ls+WXc7hSE81i+ADQlJx1qr1SapSb\nco7WVu5I9LWSdhljZkj6iqSVkn7rWVTNgomFdZe1WaWz6fLLOdyoiWYkGgCaktMx0SulEvRKBn3Q\nfMpNotM2Vz1/iqSfWWuvkcTq+CxxV3c9u16Vw9mumhazzhsvp+IAoDnFwjFPuyOWTKIzSc5mtrBy\n14nuMMZcIukcSccYY0KSeFUYVueot0rrlAsTC6sYia40YQcANBbPyznKGIlmIKZ1lZtEnynpo5I+\nZa1dZ4yZKOlK78JqEk45x22flWZ9XJp3sb/xBMDvXvydpApGovPJ9sWPXlxxZ6id6Z2SqIkGgGYV\nDUV192t36/JjL695X7evuF2/WfKb3W771wf/dbckORqO6ntzvydJ+ubj39Sqbau0/+D9az42GlNZ\nSXQ+cf6TpAPyN22UdJtnUTWLsW/PJc/L75eW3UUSXQeL3lokSZo7fm5Z2x8y/BCdtv9p2pHaUdXx\n5o6bq/2H8AYIAM2oPdouSVV1rd3TY2se07pd6/SOce/Q8H7DtWbHGh08/ODC/clMUo+sfkSLNy6W\nldVLm1/ScROO06kH9N0aHM2rrCTaGHO+pAskDZM0RdJ4Sb+Q9C7vQmsC8YHSKddIt5wjbXzF72gC\nIZlNas7oOdpn4D5lbd8/2l/fnftdj6MCADSi4ycer8UbFyuVTdVcVpHMJDV+wHhdPe/qXu/f0rVF\nx95yrJKZpKxyTVi+N/d7GtI2pKbjonGV+7Xs85LmStouSdba5ZJGeRVU04nEpXSX31EEQjJDfRkA\noDxOSZ8bkwtLdcvt2dyLOTXBUG5NdMJamzTGSJKMMRFJffe6DJJIXEp7N3EB3ZjpDAAol5utv0t1\ny+05kd1pB87nVWsrdyT6EWPM1yT1M8a8R9L/SbrTu7CaTDguebiEDrqx5iYAoFy1LHO6p1LdciMm\nIiOTG4nOJmVkFDHljlWiGZWbRF8saYOkxZI+I+luSd/wKqimw0h03VTS8hsAEGzRUL5rbRXLnO6p\n1OePMSa3pF42qVQmV4PtnMFHayp3dY6spOvzP9hTOEZNdJ3QQhUAUC7n86IeNdFSrgY7mcmVc1DK\n0fr6TKKNMYvVR+2ztfbtrkfUjCJxKZuSslkpVNsSOugb5RwAgHI5E9FdKecoURMtdTd3sbJ8VgVA\nqZHoD9YlimYXya8WkUlKoTZ/Y2lxlHMAAMrlJLL1KOeQ9kii+axqeX0m0dbaf9YrkKbmLLmW3CmF\nwpKMFA72ZIKszSpTZjv0sAmXvW05IwEAAEjdq2N0pjqVypYejXZqqB09P8tS2VTpco5wTIlMgiQ6\nIMptttKh7rKOmKSopJ3W2kFeBdZUnJHoK/fL/TYh6SP/Kx0c3IH8c+4+Ry9sfMGTfbeFGe0HAJTW\nP9JfkvSZ+z9T1vYXzrhQn5v5ucL1U24/Rau2rypcb4v0/fnTL9JP96y6R5J04NADK4wWzabciYUD\nncsmN9X0FElHehVU03G+bcYGSkd9XnrkMmnTcn9j8tnyrcs1a9QsHT3+6D63++2Lv9W2xDYdNuYw\nHTm29EsqZEI6ecrJboUJAGhhBw07SJccfol2pHaU3Pb3L/1eK7auKFxPZ9NatX2Vjhx7pA4bc5hC\nJqT3T35/n/u46LCL9Oxbz0qSZo2aVVvwaHgV1xzY3Aritxtjvq3c0ndwvpmO2F869t9zSXTAl7xL\nZVKaPXq2Lnj7BX1uN3/FfG1LbNORY48suS0AAJUIh8L66MEfLWvbv6362261006DlqPGHaVPve1T\nZe1jzpg5mjNmTuWBoimVW87xoR5XQ5LmSGJNN0ekR91TOCKZcKCbr2RtVmmbLmtmsrOGJrOYAQB+\nioVju63i4dRQ8/mEYsodiT6px+W0pFXKlXRA6p5Y6IjEpXRwk2jn23sla2SyniYAwE/RULTXkWgm\nCKKYcmuiP+l1IE0tssd/sHAs2El0/k2onG/vueog3qQAAP6KhWPald5VuO40aOHzCcWU1RnEGHOj\nMWZIj+tDjTG/8i6sJrPnbN1IPNDlHNV8e+d0GQDAT3uWc1QyIIRgKre93tuttVudK9baLZKYduro\ntZwjuBMLnTeh+J5/lz5Usi0AAG6Lh+OFQSCp+7OMkWgUU24SHTLGDHWuGGOGqYqVPVrWnq2+w8Ee\niXZOgZVT5+xMLKQmGgDgJ2qiUalyE+EfSXrSGPN/+esflvR9b0JqQk4bmnx9b9BHoquqieZ0GQDA\nR063QUdhQCjEIA96V+7Ewt8aYxZKOj5/04estS96F1aTC8ekdPBWALTW6pUtr+jlLS9LqrAmmm/6\nAAAfxUIxdaY7tXjDYknSK1teyd3O5xOKqKQkY5hyrb5/bYwZaYyZbK19zavAmsqAkbnfk/Ld+SJt\nUiZ4I9EPv/GwvvjQFwvXB8VKd4WfPnK6Xu94vaxtAQDwyuD4YHUkO/TRu3dvzsLnE4opt9nKt5Vr\nsHKgpF9Likr6naS53oXWRIZMlL6wUBo6OXc9EpOSu/p+TAva3LVZkvT9o7+vce3jNHPUzJKP+cYR\n39CZB56pg4Yd5HV4AAAUdd7083To6EOVtdnCbQNjA7X/kP19jAqNrNyR6NOUW43jWUmy1r5pjBno\nWVTNaMQB3ZfDcSmzxb9YfOLUQs8dN1fD+w0v6zEDYgM0axQLvQAA/NUebdfR44/2Oww0kXJX50ja\n3AwwK0nGmHbvQmoBkWA2W2EmMwAACIpyk+g/GmN+KWmIMeZ8SfdLut67sJpcOJhtv0miAQBAUJS7\nOsdVxpj3SNquXF30t6y193kaWTML6MRCujsBAICgKHt1jnzSTOJcjgCXc0RD0UIDFQAAgFbVZxJt\njOlQdyuR3e6SZK21rPvSm3A8mCPRmSSlHAAAIBD6rIm21g601g7q5WdgqQTaGPMrY8xbxpglPW77\nT2PMGmPMovzPiW79QxpKJJjNVpKZJKUcAAAgEMou5zDGzJB0TP7qo9baF0o85DeSfibpt3vc/mNr\n7VVlR9iMnJpoa6UAlTYks4xEAwCAYCi32cqXJJ0v6c/5m35vjLnOWvvfxR5jrX3UGDOp5gibkZNI\n/uN/pNAef+L2EdLBJ9U/JhctWL1A63at2+v2lVtXkkQDAIBAKHck+jxJR1hrd0qSMeZySU9KKppE\n9+ELxphPSFoo6SvW2l67khhjLpB0gSRNnDixisP4aEg+3ru/2vv9X17cvU2T2ZXapc8/8HnZXkvl\npSPGHFHniAAAAOqv3CTaSMr0uJ7J31apayVdqtxkxUsl/UjSp3rb0Fp7naTrJGnOnDm9Z2yN6u0f\nkfZ7p5RN7377K/dIf/mylNzpT1wu2JXeJSurLx36JZ085eS97h8aH+pDVAAAAPVVbhL9a0lPG2Nu\ny18/VdINlR7MWrveuWyMuV7SXyrdR9MYMLKX20bnfjfxpEOnocrwtuEa1X+Uz9EAAAD4o9xmK1cb\nYx6W5DSV/6S19rlKD2aMGWutXZu/epqkJX1t33Ii+XrhdPMuf+ck0dFw1OdIAAAA/FP26hySXpOU\nzj/GGGMOtdY+W2xjY8xNkuZJGmGMWS3p25LmGWNmKlfOsUrSZ6qMuzmF47nfmeZtxEJXQgAAgPJX\n57hU0r9IWqnu5itW0vHFHmOtPbuXmysuAWkpkXwS3cQj0alMSpJYhQMAAARauSPRH5E0xVrbvNlf\nI4i00Eg0STQAAAiwPjsW9rBE0hAvAwkEp5yjiScWJvJfACjnAAAAQVbuSPQPJT2Xb+FdGEa11u69\nxhmKa6GJhYxEAwCAICs3ib5R0uWSFkvKehdOi2uBiYXURAMAAJSfRO+y1v7U00iCwKmJfvIaafa/\n+BpKuV7Y8ILmr5gvSRrZf2ThMuUcAAAgyMpNohcYY34o6Q7tXs5RdIk79KItX1a+8RWpa5vUNtjf\neMpwy8u36C+v/kXxcFyd6U5JUsRENLp9tM+RAQAA+KfciYWzJB0p6QfKter+kaSrvAqqZYUj0on5\nP1u6OUo6utJdmjhwoj4343OF22764E1qj7b7GBUAAIC/yh2JftBae6kkGWParLXNu7yE3wprRTdH\nEp3MJhUPx3ergaaUAwAABF2fI9HGmIuMMUdJOr3HzU94G1KLK0wubI4VOlKZlGLh2G5JNC2/AQBA\n0JUaiV4m6cOS9jPGLMhfH26MOdBa+7Ln0bWiwjJ3zTMSHQ1Fdxt9ZiQaAAAEXama6K2SviZphaR5\nkv4rf/vFxhhGpKvRZA1XEpnEXiPRLG8HAACCrtRI9PskfUvSFElXS3pB0k5r7Se9DqxlRZqvnCMe\nj+82+hx3vggAAAAEVJ8j0dbar1lr3yVplaT/lRSWNNIY85gx5s46xNd6mm1iYSapWDi2Wx00NdEA\nACDoyl2d415r7UJJC40xn7PWHm2MGeFlYC2rySYWFmqie5RwREy5LxsAAIDWVNY60dba/+hx9V/y\nt230IqCWV5hY2GQ10T3KOYwxPkYEAADgv4qHFK21z3sRSGBE2nK/7/uWtOZZ6d3f9jWcaxddq8fW\nPFb0/s2dmxULxaiDBgAA6IHz8vU2dLI0/SPSqsek52/2PYm+89U71ZXu0tShU3u9/4hxR+i9k96r\nyYMn64RJJ2jS4En1DRAAAKABkUTXWyQmnX69dNdXpKW3+R2Nkpmk5o6fq0vnXlpy2yuPu7IOEQEA\nADS+smqi4YFwXEr7P7kwlU3RPAUAAKBCJNF+icQaYnKhs4QdAAAAykcS7ZdwXMqmpGzW1zCSmSTr\nPgMAAFSIJNovzlJ3Pq4Xba1VMptk5Q0AAIAKkUT7pdB0xb/OhalsSpKoiQYAAKgQSbRfGqD9dzI/\nCk5NNAAAQGVIov3SCEl0NpdER0PURAMAAFSCJNovhXIO/2qinZFoaqIBAAAqQ7MVv0Tz7b+vOUIy\nRb7LzDhTOvm/i+9j43LpundK0X7Svz4jtQ0q69B/fPmPuuIfVyhrcyuDxCMk0QAAAJUgifbLfu+U\n5l0ipTp7v/+lO6U3n+t7H5tWSsmO3E/HurKT6Bc3vaiQCeljB39M8XBcx4w/psLgAQAAgo0k2i9t\ng6R5Fxe/f8sq6a2X+t5Hz5U9KljlI5VNaWh8qP5t9r+V/RgAAAB0oya6UUXipTsa9pyUWMEExUQm\nwYocAAAANSCJblThWOlJh1Um0bT6BgAAqA1JdKOKxEsnxlWWcySzSRqsAAAA1IAkulFF2soYiU72\nfrmEVCbFSDQAAEANSKIbVThWRk10V++XS0hkEoqGabACAABQLZLoRhWJS9m0lM0W36bnSHUFTVuS\nmSQNVgAAAGpAEt2onHKLvmqdq5xYmMqmqIkGAACoAetENygbjml1JKLUq/dJsfbeN9r2mkYao5Qx\n2rpxifTaA2Xte2fXVkWH8NQDAABUi0yqQd3btVb/vs846amv97ndmAnjtS0kda69W1p7d9n7P2Z9\niUYuAAAAKIokukFtGDlFekP67r4nq1+R0os7Nj2vBduXS5JOGz5L7xg0pbydL/qDDus/3K1QAQAA\nAockukElZSVJJxz9DfWL9Ot1m2XP/EQLluSS6JkHnqoTDvhQeTtffHffExYBAADQJyYWNqhkNrfa\nRl8TAHuu9RwNVbBkXTndEAEAAFAUSXSDSmVSCpuwwqFw0W16JtEVNU8ppxsiAAAAiiKJblDJTLJk\nYtxz9LmiJevCJNEAAAC1IIluUMlssmSJRvUj0bG+158GAABAn0iiG1Q5XQV73l9ZEt0mpamJBgAA\nqJZnSbQx5lfGmLeMMUt63DbMGHOfMWZ5/vdQr47f7Cou56gkiQ4zEg0AAFALL0eifyPphD1uu1jS\nA9baAyQ9kL+OXlRczlFJTXQkLqW7qg0NAAAg8DxbJ9pa+6gxZtIeN58iaV7+8o2SHpZ0kVcxNLJU\nNqVHVz+qRJEJfqs7VpccXe6ZOFc8Et21TVp8a+7y1PflEmsAAACUpd7NVkZba9fmL6+TNLrYhsaY\nCyRdIEkTJ06sQ2j19cSaJ/Tlh77c5zZzx8/t8/5R/UcVLg9tq6AyZuDYXBL9p/Ny1z/8G2naaeU/\nHgAAIOB861horbXGGNvH/ddJuk6S5syZU3S7ZtWR6pAk/eLdv9C4AeN63WZs+9g+9zFtxDTdd8Z9\nioQiGtY2rPyDz7tYevuZ0o510m8+ICU6yn8sAAAA6p5ErzfGjLXWrjXGjJX0Vp2P3zBSmZQkafLg\nyUWT6HKMaR9T+YNCYWnE/lLb4Nx11owGAACoSL2XuLtD0rn5y+dKml/n4zeMZL7tdkW1zG6L5I9N\nC3AAAICKeLnE3U2SnpR0oDFmtTHmPEmXSXqPMWa5pHfnrwdSMptLXEutwOEpZ51pVuoAAACoiJer\nc5xd5K53eXXMZpLIr9NcqqGKp5xRcBqvAAAAVISOhT5xaqJ9LecIhaRQlMYrAAAAFSKJ9kkym1TE\nRBQyPj8FkTgj0QAAABUiifZJMpNUNOxjPbSD7oUAAAAVI4n2STKT9Lce2hGOU84BAABQId+arQRV\n1mb1m6W/0bNvPbtb227fRGLS6oXS377Z+/3GSDM+Kg3fX3r8J9LQSdL0M+oaIgAAQKMhia6z17e/\nrh8/82NFQhEdO/5Yv8ORxs+Rlt0l/f363u9Pd0qpTmnWx6UHL83dRhINAAACjiS6zpyl7a489kq9\ne993+xyNpDNu6Pv+Hx2US6JT1E0DAAA4qImuMyeJ9nVpu0qEY7m24NRNAwAAFJBE11lDtPuuRKQt\nl0CneyTRmbR/8QAAADQAkug6c9p9N8SkwnJEYrl1pHdLohmVBgAAwUYSXWcN0amwEs4SeD0T5zRJ\nNAAACDaS6DpzRqKjoQZotFKOSDyXNPfsapihwyEAAAg2kug6a4mJhXQ4BAAAAUcSXWdOOUdDdCss\nR2FiYY/R5zQj0QAAINhIouus+VbnyE8szDCxEAAAwEESXUdZm9VPnv2JpCaqiQ7Hpa2vSwt/1X3b\nnz7NaDQAAAg0kug62p7Yrh2pHWoLt2lgbKDf4ZTn4JOkMdOl/iOk/d+Tu23DMmnLKl/DAgAA8BNt\nv+vImVT4H4f/h0KmSb6/HHJy7sfx4h3SH8+hpAMAAARak2RyraHpGq30JpKfEEk5BwAACDCS6Dpq\nukYrvXFiZyQaAAAEGEl0HbXWSDRJNAAACC6S6DpylreLhptkZY7eOOtb07UQAAAEGEl0HTlJdNM0\nWukNI9EAAAAk0fVUKOdo5proCCPRAAAAJNF1VOhW2Mw10c4XgHSXv3EAAAD4iCS6jlqiJppyDgAA\nAJqteOGJN5/Q1x/7ujLZzG63O81Wmrsmui33+2/flB76/t73H3iidMrP6hsTAABAnZFEe+DFTS9q\nY+dGfXjqh/fqTDisbZj2GbiPT5G5oN8Q6d3fkba9sfd9Kx+S/vl4/WMCAACoM5JoDzhlG9848hvN\n0967Ekd/uffbb79QevWR+sYCAADggxbM8PyXzCQVCUVaM4HuSzhGJ0MAABAIAcvy6iORSTT3ChzV\nisSZcAgAAAKBJNoDqWyqudeCrlY4RhINAAACgSTaA8lMMphJdKQtV85hrd+RAAAAeIok2gPJbDKg\n5Rz5f3Mm5W8cAAAAHiOJ9kBgR6Kd9a/pZggAAFocSbQHAptEO90M80v8AQAAtCrWiXZJJptRyIRk\njCGJ3vpPyYSk/sNKP8ZaqWtbrokLAAB+sVbqWLv7vJ5Yf6nfUP9iQkNjJNoFmzo3aeb/ztTNL98s\nKcA10bEBud/XHy9dsZ+09oXSj7n/29Ll+0obV3gbGwAAfXn8J9LVB0s/PqT754op0pZVfkeGBkUS\n7YK1O9dKkuavmC9JSmUCusTdQR+QTrtOOuarkvLf6Et56S+53+VsCwCAV7atzg0GnfTT3M+Rn5ds\nRupY53dkaFAk0S6weyzpFthmK9F+0owzpWmn5a6XtWZ0/m9Hp0MAgJ/SCSk+UJp9bu7noBO7bwd6\nQRLtgWQ2qWg46ncY/nFqoyt54+FNCgDgp3Qi1zTMEWayPPpGEu0Cq91HopOZpOLOf74gct6Eyhpd\nNrlfJNEAAD9lErmmYY4Iy7aibyTRLkju8S01sDXRjmpGovmmDwDwUzrZ3TRMqu6zDIFCEu2CZHb3\nBDCRTSgaopyjvMQ4P4rPmxQAwE+ZRHcJh9TjrCqDPOgdSbQL9hyJDuw60Y5qOheSRAMA/JROdA8C\nSYxEoyRfmq0YY1ZJ6pCUkZS21s7xIw639FbOEeia6MIbTwXf3lmdAwDgp3RCahvUfd2pj2YkGkX4\n2bHwndbajT4e3zVOOYeRUdZmlbbpYC5x5wiFJRNmYiEAoHkUK+fg8wlF0PbbBalMSpK0oXODHnz9\nQRDq5r4AABuLSURBVEkK9hJ3Um40esPL0sv39L1dcmfu91svld5WyiXo+87NtWIFAKAv1kqvPyl1\nbS+97a4t0rD9uq87Z1XXL819PhkjTTxq99HqPW19XVr/Yu7yqIOloftWHzsanl9JtJX0N2OMlfRL\na+11e25gjLlA0gWSNHHixDqHV5lEfsR1/a71+reH/02SNKxtmJ8h+a99hLTsL7mfciy5NfdTjvdc\nKs39YvWxAQCC4a0XpV+/v/zt+7+v+3IoIrUNll64OfcjScd8RXrXt4o//v8+Ka1ZmLs8fo50/gOV\nx4ym4VcSfbS1do0xZpSk+4wxy6y1j/bcIJ9YXydJc+bMsb3tpFE4NdHXvec6DYoNUjgU1tShU32O\nymeffiDXQrUc/YdLuzaVt+3/vFvq2lp9XACA4OjMf16ceJU0fnbp7Ucd0n3ZGOnCp6WOtbnr/3tq\n9/6K6doq7ffO3OVtb1QeL5qKL0m0tXZN/vdbxpjbJB0u6dG+H9W4nJroWaNmqa3nQu1BNmBU7qdc\n5Z7yisSpTwMAlMeZmzP6bdL4Qyt//KCxuR9JiraXnuuTTkoDx0qy0qaVlR8PTaXuS9wZY9qNMQOd\ny5LeK2lJveNwk1MTHehl7eolHGOmNACgPM4qUREXPp8jsdKrTmUSue3CMVadCgA/RqJHS7rNGOMc\n/w/W2jJmlDWuZDapiIkoZFh223ORNkaiAQDlcRJZN5adDcfLGIl2VviwfFYFQN2TaGvtq5Jm1Pu4\nXkpkEqzGUS8RRqIBAGUqjES7kERHYqUT43R+JNpaPqsCgCXuXJDMJIPdXKWewvHKOiECAILL+bxw\no9wyXMacnAwj0UFCEu2CVDYV7OYq9RSJV9YJEQAQXE75hRuT/iNtfY8uZ9KSzeaPZSWbyd0WJtVq\nVRTxuiCZSVLOUS9M1gAAlMv1iYV9fP4UEvZY98g3n1ctjSTaBYlMgpU56oUl7gAA5XJ7YmFfnz/p\nHsdyarD5vGppnGOoQSqb0i3LbtGKrSso56iXcEx67RFp12apfxldITMp6R//IyU6qjte22DpsPOl\nEN83AaDprHo899utiYUda6VHrsjVWu/aLA0a132/8znjTCyUpMd/Is04O9cCHC2HJLoGSzcu1eX/\nuFyS9IH9PuBzNAExeJ/c7xfnS3M+WXr7Nc9K91xc2zH3fYc0Znpt+wAA1N+WVbnfoXDt+xo1LffZ\n89D3i28TikrD9+++/Ph/SR3rpA9dV/vx0XBIomvgtPu+/r3X64gxR/gcTUC873vSot9Jqc7ytk/t\nyv3+l7ukiUdVdqwVD0h/+HD5xwIANBabkd52ujv7mneRdOxXc5e/mz8T+tnHdm8VLtN95vIbb0nX\nvqP7cwgthyS6BmmbliTFQjHlm8fAa05dW7mTNZyZ1NF+lY9ERPOzualpA4DmlE66szKHY8/PkWj/\n4p8toRArSrU4Cj1rkLVZSaJTYT0VJmuU+aaUrmFSSaUJOwCgsWQS7qwRXUypfUfK6HKIpkX2V4NM\nNiNJioQY0K+bUFgKRcpvuOIk0dVMKnGWRGIUAQCak9sj0Xsq9dkSLqPLIZoWSXQNnHKOsHFhwgLK\nF46X3061sLxRFSMRzhsvowgA0JwyCXfWiC6mVBLNsqwtjSS6BpRz+KTUgvc91TIS7STevAECQPOx\nNnfW0o01oospte9KBn3QdMj+akA5h0/CFdSYOW9eVY1Es1g+ADStTCr328uR6JI10ZRztDKS6Bpk\nbC6Jppyjzioaic7XTldTE1eYWMgoAgA0HTe7FRZTqhFXpI0kuoWRRNeAJNonlbwpOZMCq5pYyEg0\nADStwvu/hxMLSwnHmFfTwqhDqIFTzhF2oxMSyheOS68/Jd3y8dLbvrVMMuHqulU5SfRzv5PeeKry\nx1ejbbB04o+616gGWsEDl0obXy5+/wHvkw49p37xoH7WL5UevVLKpqV+Q3Pvb0//Qlr9d++PXZgT\n42E5RymReK49eG+fV0MnS+/5rkSfiaZFEl0DZySaiYV1dvBJ0ou3S5tWlt42HJWmn1HdccIx6ZBT\npI3LyztWrRId0rY3pMPOl8bN9P54QD1kM9KCq6T2kbmfPW19Q9r8Gkl0q1p2t7T0NmnQBGn7aumI\nz0mP/0SyWWngWO+PP3amNH6O+/s9/Qbp9SdLb7ffO6V/PrH3Z8iuTdJLd0rHXSTFB7gfH+qCJLoG\nTCz0ybyLcj9eM0b6yG+9P47jlXulP3wk16YWaBXOaOBRX5CO/vLe9//fJ6V1i+sbE+onk5BMSDrx\nSunms3PX00np0E9IJ/zA7+iqN/2M8gZoDjox97Onp34h3XMRc26aHEOoNaAmGq5yXkfZrL9xAG4q\nTO4tMi+BdXRbm7PEXKTHkqHpLn9LLBpBhCVUWwFJdA0o54CrnLrtbNrfOAA3ZUpM7mXiVWtLJ3MJ\nozO5L90lZVP+TvZrBD3/HmhaZH81cJqtUM4BVzivI5JotJJ0iWXGGIlubZlE7rl3nv/Ejtzvatbu\nbyXOv59yjqZGEl2DdJa233CRMxJNTTRaSVkj0SQSLSudzD33TvlCYnvudzXLjrYSllBtCSTRNaAm\nGq5iJBqtqDASXWTkMdLGKe1Wlu7KJYzOSHRXPokO/Eg0zbxaAUl0DQpJNOtEww1MLEQrKqzV20c5\nh81KGb48tqRMcveJhYmO3O/Aj0QzsbAVkETXIJPNyMgwsRDuYGIhWlGmRBJdqA0lmWhJ6cTuEwsL\n5RxMLJTE677Jkf3VIGuzlHLAPSTRaEXlTCzsuR1ay14TCynnkNT9709TztHMWFaiStcuulY3L7uZ\nUg64x6mJDsrEwmxG+t9TpS3/rN8xQxHppP+SJh9T234e+K60+FZ3YnJMOzXXArhSnVul356c++2G\nycdI7/uBdONJle1z8jHSKdfsftuODbnnWCq+LrCTRP/y2FxTjj2Fo9Kp10r7HF5+LEHwwKXS4v/r\ne5vYAOnjt0qDxnkXxx/OlN56qfj9HeukiUd0P88v5GMOfDlHfiT6ji9I0f7+xtKoBu8jffIuv6Po\nE0l0lR5/83G1Rdr0mWmf8TsUtIrCxMKAJNGJ7dJrj0rjDpVGTPX+eDaTSzpW/6P2JHr5fbkzBpNq\n3I9j1WPS8vurS6K3rJLWPp+LZdD42uJYs1B65W/S4RdUtk/ncXvatCL3e9Qh0ui39f7YA94rzTpH\nyqT2vi+TlJb+WVrzLEn0nlbcn/ubTT629/t3bpBWPiBtfMW7JDqTll65Rxo9XRo9rfh2007Ntbae\nd0muxXu0nzTxSG9iahYjDpCOvFDatdnvSBpX+wi/IyiJJLpKyUxSBw8/WOdOO9fvUNAqnFG4oCTR\nzun7WR+XDjvP++Nls7kk2o2ygXRCGj9b+tAva9+XlGt9vfb56mORpLlflg54d21x/PX/t3f3UXLV\n9R3H35/MZneBxEAIFgSCAWkRShCaIqAVsBweC6mix3B8bO2hteLjqadqrbXWFji0eGjRSg9QW4pg\nQa20xQJHlJYnJWogPGoIWEGPkcQGQ0gmu/vtH/fezbDZ3Zk7e2fuzNzP65w5O/fOffjNb3737nd+\n83v4Y1hzXf5jZvvtkrZ01I2z/mbmmsdFB8DKy6d/rf5cEkR79I5djW2H/Y+ZuQw+tToJojvZTCZr\nz3vkufDqDzTf/qQPdy4t/aY2H06/sOxU2By5TXSb6uN1RmZq42fWjqoNcdds1IaizZsH8+YX05Fn\nfHuxHaOGRtsf6qpZx708stkDJz+bFtutDo1Mn6/Ze2r3XulhwGbWrAx2o635ZDmpeCdBqywH0W2q\nT9SZP29+2cmwQVK1joWTk3B08R/w0EgxHXmyqYyLMjTcfrAz1mQyk1zpGE3SMZ4zOKqlsw5GTElb\nzmB8l+MOJUM/utPhrrJJTGbSjS8gk1+SKt5J0CrLQXSb6uN1hn3jsCJVrWNhs0k4OiGraZ2rbMSB\notRmqMltNS1QTD4ODQORNKPIc8xsv6lfAOdaEw0z13JX3fj22T+fboxD3O1fk8x6jIPoNtXH6wzP\ncxBtBapax8Iy/gEPjRTTvrZZLWBeQ8Pt15AXmY9TZ5Vr9ZjZflPzNlueS619bQ619IOs1ZroTrYn\nbzZ8odmAcxDdpvqEa6KtYFXrWFhkDWqrimrOMb694CB6dA410UU258jG8k1nlWu5Jjpt9jE1b4to\nMzs04iB6Os3K4FA3mnO4JtqqzUF0m9ycwwrnjoWdN5dmE5mInVMZF6U2h6mvi6wNzO5peadmzmqa\np+ZtEW1mayPuWDhVRPK5z/aZd6VjYYFf4Mz6kIPoNkQEOyZ2OIi2YlW1Y2E3fwqeS7OJzFw7y01n\nsv1qGz+9F/llZLImOptVLm9zjikBWxFpm0uny0E1vgOI2ctgVzoWlvBrklkP8TjRbahPJDclt4m2\nQmU10Tu27myTWoaRhSB1/jyT7W672bFwBOpbdp57eEEy9F2rdmyDrRt3HqvIdEFy7JjIt2+R0yhn\nx8jeY8tD3GX7bYLd954mbXPIq9pI0tGx8ZroVhnNaywdHnBeDYb3KP74ExNJ+Z3s+Dlbm+ihpInY\nts2du588//Pkr2uiraIcRLfhkvsuAWC3od1KTokNlHnpcF53XJw8yrJ8VXGTiMzk7r+DWz+WPO/m\nlLfDe8ATd8BFBybLh/0WrLq2tX1//iRcfuzO2rfhAtOdBVyXLW9vf80rZqjA4QXJ3/uvy3fMbL8r\nX7vra7XhJKBrO017wA9u2fmZARz3bjj9r9o/Zids2QCXHZV8CQY49yo48g3FnuP685IZAjPNyuDw\nArjn8uTRSZ622irKQXQbfvrcTwE4+5CzS06JDZR5NXjTv8Cm9eWl4Tufh02Pd/48G9fB8EI48xJY\nfHDnz5c59VPJVOMAa76QL683P5UE0CveCfscBke8vrh0HX4O7Hi+/Z/eFy8rpkb/4JPgrEuTtOz1\n0tZrGJeduHO/qZYcOrc0nXEx/PDuncv3frY7ZTSvZ3+cBNCveDOsuTaZ3rpoG9fBvkcmX3Rr8+FX\nz519+zf+I2x4tPh0NBp9Eezb5pc/sz7nILoN9Yk6y5csZ9HIorKTYoPmsDPLPf+Td8KzT3f+PGN1\n2G1PeMV5nT9Xo/2WJw+AH38vebQqa5e7/E2w9JXFpmt0Ebzy/GKP2Y75o+1Nwd7ufq3Y/5jkkXn4\nq73ZRjr7AnTE65MvaJ0Y23qsDgf8OpxwQWvbv+yU5GFmHeGOhW2oj9eZX/NshTaAhoa7MxJCs4ki\numEo56gPk0PJuS9EqfJ+bt3S2ImyU8Py9cJ1Y2aTHES3wROt2MCqFTQZSTNjBY+z3I7acL73mm3r\niSXKlfdz65bGILrWoSB6bFv5142ZTXIQ3Yb6RJ0R/yO1QVTEEHCtGK+XX6OWd+IVj4nbG4qaMKdo\njcO9DRU0vfxUYz1w3ZjZJAfRbXBzDhtYRUxG0oqxbcWMJjEXtZyBjsfE7Q15P7dueUFzjtHOBPrj\n28u/bsxskoPoNni2QhtY3arlG6uX37Y4a7ca0dr2ZcywaLvq1WnAG2dn7ESgPz6WjCHu8mfWM0oJ\noiWdLukxSeskfbiMNMyF20TbwOpWe9PxJlMWd0NtBIh09rcWjLkmuifUenQGw+y66VTHwsk2+S5/\nZr2i60G0pBrwGeAM4HDgPEmHdzsdc1GfcE20DaihUZjYkcyM1klj9fJr1LLzt1pjmG3nn9PLNTTa\no805sjbzo50J9MfdJt+s15QxTvSxwLqIWA8g6XpgJfBwCWmZ0TPPP8MTm6cfLH/b2DYH0TaYsiYW\nT3yzszVe2zaXHwxk53/if5IJI5rZmE7w4Wu/XEMjyaQuT95Zdkpe6JnHkr+14SSQfm5DsWncuin5\nW/Z1Y2aTygii9wd+1LD8FFDwzAVzd8+P7+Gjd350xtf3HNmzi6kx65LdFid/r3ldF851RufPMev5\n0/d6fY4JX0b3hHnuSlKq3fZKmjZ8/qyyU7KroVGYvxvsvhgeu7kzaczKrZmVrmdnLJR0PnA+wNKl\nS7t+/uNfcjxXnXrVtK9J4sglR3Y5RWZdcPRbYJ9fgYmxzp/rJUd3/hyzOeJ1sOeB+SbuWHRA59Jj\nrTn+Alh6XNLJrtcs3C+ZjnvlZ+CnDxZ//NoIHLCi+OOaWVsUrfZML+qE0vHAJyLitHT5IwARceFM\n+6xYsSJWr17dpRSamZmZWVVJ+k5ENP3GWsbvkvcBh0paJmkYWAXcVEI6zMzMzMza0vXmHBExJukC\n4BagBlwdEQ91Ox1mZmZmZu0qpU10RNwM3FzGuc3MzMzM5srdzM3MzMzMcnIQbWZmZmaWk4NoMzMz\nM7OcHESbmZmZmeXkINrMzMzMLCcH0WZmZmZmOTmINjMzMzPLyUG0mZmZmVlODqLNzMzMzHJyEG1m\nZmZmlpODaDMzMzOznBxEm5mZmZnlpIgoOw1NSfoZ8MMSTr0EeKaE8/Yr51d+zrN8nF/5OL/ycX7l\n4/zKx/mVT5n5dVBE7NNso74IossiaXVErCg7Hf3C+ZWf8ywf51c+zq98nF/5OL/ycX7l0w/55eYc\nZmZmZmY5OYg2MzMzM8vJQfTs/qHsBPQZ51d+zrN8nF/5OL/ycX7l4/zKx/mVT8/nl9tEm5mZmZnl\n5JpoMzMzM7OcKhtESzpd0mOS1kn68DSvj0j6Yvr6tyS9tOG1j6TrH5N0WjfTXZYW8uuDkh6W9ICk\nr0s6qOG1cUlr0sdN3U15OVrIr3dI+llDvvxew2tvl/SD9PH27qa8HC3k16cb8ur7kv6v4bUqlq+r\nJW2Q9OAMr0vS36b5+YCkYxpeq2L5apZfb07zaa2kuyUd1fDak+n6NZJWdy/V5Wkhv06StLnhuvt4\nw2uzXsuDqIX8+lBDXj2Y3rMWp69VsXwdKOkbaczwkKT3TbNNf9zDIqJyD6AGPA4cDAwD9wOHT9nm\nD4HPpc9XAV9Mnx+ebj8CLEuPUyv7PfVAfp0M7J4+f1eWX+nylrLfQw/m1zuAy6fZdzGwPv27V/p8\nr7LfU9n5NWX79wBXNyxXqnyl7/k1wDHAgzO8fibwNUDAccC30vWVK18t5tcJWT4AZ2T5lS4/CSwp\n+z30WH6dBPzHNOtzXcuD8miWX1O2PRu4vWG5iuVrP+CY9PlC4PvT/I/si3tYVWuijwXWRcT6iKgD\n1wMrp2yzEvin9PmNwG9KUrr++ojYHhFPAOvS4w2ypvkVEd+IiK3p4r3AAV1OYy9ppXzN5DTgtojY\nFBE/B24DTu9QOntF3vw6D7iuKynrURHx38CmWTZZCfxzJO4F9pS0H9UsX03zKyLuTvMDfP9qpXzN\nZC73vr6VM798/4r4SUR8N33+C+ARYP8pm/XFPayqQfT+wI8alp9i1w9wcpuIGAM2A3u3uO+gyfue\n30nyDTIzKmm1pHsl/XYnEthjWs2vc9OfqW6UdGDOfQdJy+85bSa0DLi9YXXVylcrZsrTKpavvKbe\nvwK4VdJ3JJ1fUpp60fGS7pf0NUlHpOtcvmYhaXeSgO9LDasrXb6UNJU9GvjWlJf64h42VNaJbTBJ\neguwAjixYfVBEfG0pIOB2yWtjYjHy0lhz/h34LqI2C7p90l+9XhtyWnqB6uAGyNivGGdy5cVQtLJ\nJEH0qxtWvzotXy8GbpP0aFrzWGXfJbnutkg6E/g34NCS09QPzgbuiojGWuvKli9JC0i+ULw/Ip4t\nOz3tqGpN9NPAgQ3LB6Trpt1G0hCwCNjY4r6DpqX3LOkU4E+AcyJie7Y+Ip5O/64HvknyrXOQNc2v\niNjYkEdXAr/W6r4DKM97XsWUn0IrWL5aMVOeVrF8tUTScpJrcWVEbMzWN5SvDcBXGPzme01FxLMR\nsSV9fjMwX9ISXL6ame3+VanyJWk+SQB9bUR8eZpN+uIeVtUg+j7gUEnLJA2TFOypvfpvArJen28g\n6QgQ6fpVSkbvWEby7fvbXUp3WZrml6SjgStIAugNDev3kjSSPl8CvAp4uGspL0cr+bVfw+I5JG3C\nAG4BTk3zbS/g1HTdIGvlekTSYSQdSe5pWFfF8tWKm4C3pT3cjwM2R8RPqGb5akrSUuDLwFsj4vsN\n6/eQtDB7TpJf047AUCWS9k37CCHpWJJYYiMtXstVJGkRyS+0X21YV8nylZadq4BHIuLSGTbri3tY\nJZtzRMSYpAtIMr5G0tP/IUmfBFZHxE0kH/A1ktaRdBhYle77kKR/JflHPQa8e8pPywOnxfy6BFgA\n3JDeW/83Is4BXg5cIWmC5EZ7UUQMdJDTYn69V9I5JGVoE8loHUTEJkl/QfLPCOCTU376Gzgt5hck\n1+D16ZfZTOXKF4Ck60hGSFgi6Sngz4D5ABHxOeBmkt7t64CtwO+kr1WufEFL+fVxkj4vn03vX2MR\nsQL4JeAr6boh4AsR8V9dfwNd1kJ+vQF4l6Qx4HlgVXpdTnstl/AWuqqF/AJ4HXBrRDzXsGslyxdJ\nZcdbgbWS1qTrPgoshf66h3nGQjMzMzOznKranMPMzMzMrG0Oos3MzMzMcnIQbWZmZmaWk4NoMzMz\nM7OcHESbmZmZmeXkINrMzMzMLKdKjhNtZlYWSXsDX08X9wXGgZ+ly1sj4oQOnPNo4IKIeGdBx7uA\nJK1XF3E8M7N+5HGizcxKIukTwJaI+OsOn+cG4FMRcX9Bx9sduCsiPMW6mVWWm3OYmfUISVvSvydJ\nukPSVyWtl3SRpDdL+raktZIOSbfbR9KXJN2XPl41zTEXAsuzAFrSiZLWpI/vNUw7/KH0GA9I+vOG\n/d+Wrrtf0jUAEbEVeDKd8tnMrJLcnMPMrDcdRTKt+SZgPXBlRBwr6X3Ae4D3A5cBn46IOyUtJZlu\n+eVTjrMCeLBh+Y+Ad0fEXZIWANsknQocChwLCLhJ0muAjcDHgBMi4hlJixuOsxr4DeDbhb5rM7M+\n4SDazKw33RcRPwGQ9Dhwa7p+LXBy+vwU4HBJ2T4vkrQgIrY0HGc/dra5BrgLuFTStcCXI+KpNIg+\nFfheus0CkqD6KOCGiHgGICI2NRxnA3DY3N+mmVl/chBtZtabtjc8n2hYnmDnvXsecFxEbJvlOM8D\no9lCRFwk6T+BM4G7JJ1GUvt8YURc0bijpPfMctzR9NhmZpXkNtFmZv3rVpKmHQBIesU02zwCvKxh\nm0MiYm1EXAzcR1KbfAvwu2nzDiTtL+nFwO3AG9MRRZjSnOOXeWEzETOzSnEQbWbWv94LrEg7/j0M\n/MHUDSLiUWBR1oEQeL+kByU9AOwAvhYRtwJfAO6RtBa4EVgYEQ8BfwncIel+4NKGQ78KuK1j78zM\nrMd5iDszswEn6QPALyLiyoKOdzTwwYh4axHHMzPrR66JNjMbfH/PC9tYz9US4E8LPJ6ZWd9xTbSZ\nmZmZWU6uiTYzMzMzy8lBtJmZmZlZTg6izczMzMxychBtZmZmZpaTg2gzMzMzs5z+H/fovLzp2BfE\nAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7f5aeef90d90>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "for i in range(1):\n",
    "    sim.reset()\n",
    "    sim.setCompConc('comp', 'molA', 31.4e-6)\n",
    "    sim.setCompConc('comp', 'molB', 22.3e-6)\n",
    "\n",
    "    for t in range(0, 101):\n",
    "        sim.run(tpnt[t])\n",
    "        res[i, t, 0] = sim.getCompCount('comp', 'molA')\n",
    "        res[i, t, 1] = sim.getCompCount('comp', 'molB')\n",
    "        res[i, t, 2] = sim.getCompCount('comp', 'molC')\n",
    "\n",
    "    sim.setCompClamped('comp', 'molA', True)\n",
    "\n",
    "    for t in range(101, 601):\n",
    "        sim.run(tpnt[t])\n",
    "        res[i, t, 0] = sim.getCompCount('comp', 'molA')\n",
    "        res[i, t, 1] = sim.getCompCount('comp', 'molB')\n",
    "        res[i, t, 2] = sim.getCompCount('comp', 'molC')\n",
    "\n",
    "    sim.setCompClamped('comp', 'molA', False)\n",
    "\n",
    "    for t in range(601,2001):\n",
    "        sim.run(tpnt[t])\n",
    "        res[i, t, 0] = sim.getCompCount('comp', 'molA')\n",
    "        res[i, t, 1] = sim.getCompCount('comp', 'molB')\n",
    "        res[i, t, 2] = sim.getCompCount('comp', 'molC')\n",
    "\n",
    "res = res[0,:,:]\n",
    "\n",
    "plt.figure(figsize=(12,7))\n",
    "# Plot mean number of molecules of 'molA' over the time range:\n",
    "plt.plot(tpnt, res[:,0], label='A')\n",
    "# Plot mean number of molecules of 'molB' over the time range:\n",
    "plt.plot(tpnt, res[:,1], label='B')\n",
    "# Plot mean number of molecules of 'molC' over the time range:\n",
    "plt.plot(tpnt, res[:,2], label='C')\n",
    "\n",
    "plt.xlabel('Time (sec)')\n",
    "plt.ylabel('#molecules')\n",
    "plt.legend()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The function [steps.solver.Wmdirect.setCompClamped](API_1/API_solver.rst#steps.API_1.solver.Wmdirect.setCompClamped) takes a boolean which is used to turn on or off\n",
    "the clamping of the species in the specified compartment.\n",
    "\n",
    "A final way in which we will control our simulation in this chapter is\n",
    "by activating/inactivating a reaction channel. Inactivating a reaction channel\n",
    "means that it will never occur, regardless of whether the required reactants\n",
    "are present in sufficient numbers. In the following simulation:\n",
    "\n",
    "* we will turn off the forward reaction of the above equation  during\n",
    "  interval $2.0\\leq t<4.0$;\n",
    "\n",
    "* turn it back on and let everything recover during $4.0\\leq t<6.0$;\n",
    "\n",
    "* turn off the backward reaction during $6.0\\leq t<8.0$;\n",
    "\n",
    "* turn it back on and let everything recover again during $8.0\\leq t<10.0$;\n",
    "\n",
    "* and finally turn off both the forward and backward channel during a final\n",
    "  interval $10.0\\leq t<12.0$.\n",
    "\n",
    "This time, we'll wrap the “run-until-time-t“ part of the code in a separate\n",
    "function to save ourselves some writing, and we also have to alter our `tpnt`\n",
    "and `res` arrays to store data for 12 seconds:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "collapsed": true,
    "jupyter": {
     "outputs_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "def run(i, tp1, tp2):\n",
    "    for t in range(tp1, tp2):\n",
    "        sim.run(tpnt[t])\n",
    "        res[i,t,0] = sim.getCompCount('comp', 'molA')\n",
    "        res[i,t,1] = sim.getCompCount('comp', 'molB')\n",
    "        res[i,t,2] = sim.getCompCount('comp', 'molC')\n",
    "res = numpy.zeros([NITER, 12001, 3])\n",
    "tpnt = numpy.arange(0.0, 12.001, 0.001)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The actual simulation code now becomes:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.legend.Legend at 0x7f5aef51ed10>"
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAGtCAYAAADQwSggAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd81fX1x/HX547cbMIIe29EpgxxACpWwSoqVnDVibZa\nxfGrLW21trZ11dk6K04UalFxD1BEliLIHrL3CgGSkH3v/fz+uEkgkNzckNzcm+T9fDzyMHzv/X6/\nRyVw7vmez/kYay0iIiIiIhI6R6QDEBERERGpbZREi4iIiIhUkpJoEREREZFKUhItIiIiIlJJSqJF\nRERERCpJSbSIiIiISCUpiRYRERERqSQl0SIiIiIilaQkWkRERESkklyRDiAUTZo0se3bt490GCIi\nIiJSxy1evHi/tTa1ovfViiS6ffv2LFq0KNJhiIiIiEgdZ4zZGsr71M4hIiIiIlJJSqJFRERERCpJ\nSbSIiIiISCXVip5oEREREakdCgsL2bFjB3l5eZEOJajY2Fhat26N2+0+ofOVRIuIiIhItdmxYwdJ\nSUm0b98eY0ykwymTtZb09HR27NhBhw4dTugaaucQERERkWqTl5dH48aNozaBBjDG0Lhx4ypVy5VE\ni4iIiEi1iuYEulhVY1QSLSIiIiJSSUqiRURERKTOmT59OsYY1q5dG5brK4kWERERkTpnypQpnHHG\nGUyZMiUs11cSLSIiIiJ1yuHDh5k7dy6TJk1i6tSpYbmHRtyJiIiISFj85aNVrN6VWa3XPKllMn++\nsGfQ93zwwQecf/75dO3alcaNG7N48WJOOeWUao1DlWgRERERqVOmTJnCuHHjABg3blxYWjpUiRYR\nERGRsKioYhwOBw4c4Ouvv2bFihUYY/D5fBhjeOyxx6p19J4q0eXIyC1kze5MCrz+SIciIiIiIiGa\nNm0a11xzDVu3bmXLli1s376dDh06MGfOnGq9j5LocsxYvZeRT89hT0Z07/suIiIiIkdMmTKFSy65\npNSxMWPGVHtLh9o5yuFxBT5f5Ht9EY5EREREREI1a9as447dcccd1X4fVaLLcSSJVjuHiIiIiJSm\nJLocHrcTUBItIiIiIsdTEl0OtXOIiIiISHmURJcjRu0cIiIiIlIOJdHlKKlEFyqJFhEREZHSlESX\nw+Mq7olWO4eIiIiIlKYkuhzFlWhttiIiIiJSuzidTvr27UufPn3o378/8+fPr/Z7aE50OTxu9USL\niIiI1EZxcXEsXboUgC+++IKJEycye/bsar2HKtHl8Dg14k5ERESktsvMzKRhw4bVfl1VostxpBKt\nnmgRERGRE/LZ72HPiuq9ZvNeMPLhoG/Jzc2lb9++5OXlsXv3br7++uvqjQEl0eWKcWo6h4iIiEht\ndHQ7x4IFC/jlL3/JypUrMcZU2z2URJfD4TDEOB0U+JREi4iIiJyQCirGNWHIkCHs37+ftLQ0mjZt\nWm3XVU90EB6XQ5VoERERkVps7dq1+Hw+GjduXK3XDVsl2hgTC3wLeIruM81a+2djTAdgKtAYWAxc\nY60tCFccVRHjcqgnWkRERKSWKe6JBrDW8vrrr+MsGhpRXcLZzpEPnG2tPWyMcQNzjTGfAXcDT1pr\npxpjXgBuBJ4PYxwnzONyaDqHiIiISC3j84W/CBq2dg4bcLjol+6iLwucDUwrOv46cHG4Yqgqj9up\nJFpEREREjhPWnmhjjNMYsxTYB8wANgKHrLXeorfsAFqVc+7NxphFxphFaWlp4QyzXB6XgwK1c4iI\niIjIMcKaRFtrfdbavkBrYBDQvRLnvmStHWCtHZCamhq2GINRO4eIiIiIlKVGpnNYaw8Bs4AhQIox\nprgXuzWwsyZiOBExms4hIiIiImUIWxJtjEk1xqQUfR8HnAusIZBMX1b0tmuBD8IVQ1V5XE5N5xAR\nERGR44RzOkcL4HVjjJNAsv6OtfZjY8xqYKox5m/AEmBSGGOoEo/LwaFcVaJFREREpLSwJdHW2uVA\nvzKObyLQHx31PG61c4iIiIjUNnv27OHOO+/khx9+ICUlhWbNmvHUU0/RtWvXaruHtv0OIsaphYUi\nIiIitYm1lksuuYRrr72WqVOnArBs2TL27t2rJLqmqCdaREREpHaZNWsWbrebX/3qVyXH+vTpU+33\nURIdhMetSrSIiIjIiXpk4SOsPbC2Wq/ZvVF3fjfod+W+vnLlSk455ZRqvWdZamTEXW0V2GxFSbSI\niIiIlKZKdBCBdg4l0SIiIiInIljFOFx69uzJtGnTwn4fVaKDiHE58PktXp8SaREREZHa4OyzzyY/\nP5+XXnqp5Njy5cuZM2dOtd5HSXQQHlfgP4+q0SIiIiK1gzGG999/n5kzZ9KpUyd69uzJxIkTad68\nebXeR+0cQRydRCd4IhyMiIiIiISkZcuWvPPOO2G9hyrRQXjcTgAtLhQRERGRUpREB3GkEq1Z0SIi\nIiJyhJLoIGLUEy0iIiJSadbaSIdQoarGqCQ6CI8r0M6RX6gkWkRERCQUsbGxpKenR3Uiba0lPT2d\n2NjYE76GFhYGoXYOERERkcpp3bo1O3bsIC0tLdKhBBUbG0vr1q1P+Hwl0UEUJ9FaWCgiIiISGrfb\nTYcOHSIdRtipnSOI4ukc6okWERERkaMpiQ4ixql2DhERERE5npLoIDxuTecQERERkeMpiQ6iZGGh\npnOIiIiIyFGURAdRMuLOpyRaRERERI5QEh1ESTtHoXqiRUREROQIJdFBHFlYqEq0iIiIiByhJDoI\nj7b9FhEREZEyKIkOwhhDjMuhEXciIiIiUoqS6Ap4XA7tWCgiIiIipSiJroDH5VQ7h4iIiIiUoiS6\nAh6XQ3OiRURERKQUJdEV8KgnWkRERESOoSS6AoGFhapEi4iIiMgRSqIr4HE7tbBQREREREpREl0B\nj1PtHCIiIiJSmpLoCnjcaucQERERkdKURFdA0zlEymatZcHGdC5/YQHDHpuF16efExERqT9ckQ4g\n2nlcTgqUHIiUku/18dTM9Tz/zcaSY4fzvaTEx0QwKhERkZqjJLoCGnEncsSB7AJ+/+5yvlq7D5/f\ncmaXJgxq34jHZ6wjt9BHSqQDFBERqSFKoisQo3YOEQBmrN7L7VN+pMDrZ+zANpzWqQnnntSML1bt\nASC3QB82RUSk/lASXQGP5kRLPefzW16YvZHHvviJjk0S+OflfejftmHJ67FuJwC5hUqiRUSk/lAS\nXQGP26l2Dqm35m/cz98+XsPq3Zn0ad2AZ6/qT+uG8aXeE1eUROcpiRYRkXpESXQFPC4HBV4/1lqM\nMZEOR6RG/LDlAH98fwXr9h7G7TTcOrwT957fvcz3xsUUVaIL9MRGRETqDyXRFfC4HPgteP0Wt1NJ\ntNR9c9fv55Y3FxEX4+IPo7pzzantSxLlssSpnUNEROohJdEViHEFRmnne/24nRqrLXXblv3Z3Pj6\nD7RqGMekawfSoUlCheeoJ1pEROojZYUV8LgCCUK+EgSp43Zn5PLrt37EWph84+CQEmgIPK0B9USL\niEj9okp0BTxHVaJF6qrcAh9Xv/w9G9OyeXRMb1qmxIV8bnElWj8jIiJSn6gSXQGPO/CfqEAJgtRR\n1lpufnMRG9OyeWRMLy4f2KZS58cW/YzoaY2IiNQnSqIrUNLOoSRa6qh3Fm1nzvr93H52Z8YObFvp\n8/UzIiIi9ZHaOSoQ4yxu51CVTeoWay2vztvCQ5+toW+bFO4a0fWEruN2GhxGPdEiIlK/hK0SbYxp\nY4yZZYxZbYxZZYyZUHT8AWPMTmPM0qKvUeGKoToUt3OoyiZ1ic9vueXNxfz149V0bZbEs1f1x+E4\nsRGOxhhi3U4l0SIiUq+EsxLtBe6x1v5ojEkCFhtjZhS99qS19p9hvHe1KX5UrQRB6op8r48bXvuB\neRvSGd23JU+N7VvljYQ8Loc+aIqISL0StiTaWrsb2F30fZYxZg3QKlz3C5f4ok0mcgqUREvd8OSM\n9czbkM6vh3fitz/rVi07caoSLSIi9U2NLCw0xrQH+gHfFx36jTFmuTHmFWNMw5qI4UQlegKfM7Lz\nvRGORKTqVu3K4NV5m0lN8nDved1OuIXjWKpEi4hIfRP2JNoYkwi8C9xprc0Engc6AX0JVKofL+e8\nm40xi4wxi9LS0sIdZrniPYFKdLYq0VKLWWuZunAblzw3H4/LwXu/Pq1aKtDFVIkWEZH6JqxJtDHG\nTSCBfsta+x6AtXavtdZnrfUD/wEGlXWutfYla+0Aa+2A1NTUcIYZlCrRUhdMX7qT37+3gt6tGvDJ\nHWfSplF8tV7f43aSV6hKtIiI1B9h64k2gTLXJGCNtfaJo463KOqXBrgEWBmuGKpDnNuJMUqipfb6\neu1e/vj+Snq2TGbKzafidlb/Z+dAO4cq0SIiUn+EczrH6cA1wApjzNKiY38ArjDG9AUssAW4JYwx\nVJkxhoQYF9n5ShCk9pm/cT+/evNHEjxOnr/qlLAk0BBo58jMLQzLtUVERKJROKdzzAXKarr8NFz3\nDJf4GKcq0VLrbEvP4fa3l5AS7+bj28+gaXJs2O4V53awL1MfNEVEpP7QjoUhSPS4yC5QEi21R0Zu\nIb9+azGH871MvfnUsCbQAAkeF4f1QVNEROqRGhlxV9vFe1SJltrD57f8evJiVu/O5M8X9qRf2/BP\nkUxUEi0iIvWMkugQJMS4NOJOao37P1jJ/I3p/O3ik7lycNsauWd8jIscrRsQEZF6REl0CBI9LlWi\npVb45qd9vPX9Ns7r2YwrB9VMAg2Q6HFS4PNToA1XRESknlASHYJ4j0vbfkvUy8gt5I4pS2gY7+aJ\ny/tW62YqFYmPCSyvyNHaARERqSeURIcg0eNUv6dEvRdnbyQzz8s/f9GHBE/Nrhku3pRIPyciIlJf\nKIkOQXyM2jkkui3dfoj/zNnEhX1ack6PZjV+/3iPE0BPbEREpN5QEh2ChKJ2Dr/fRjoUkeMcying\nipe+A+CuEV0iEkOCKtEiIlLPKIkOQUJMUZWtUFU2iS7WWm6fsoTcQh+vXjeIjqmJEYkjobgnWhM6\nRESknlASHYLiKluOqmwSZZ6cuZ456/czcWR3zujSJGJxJBS1c6gSLSIi9YWS6BAoQZBo9OWqPTzz\n1XoGtGvIL4e0j2gsCZrOISIi9Yy2/Q7BkQRBj6olOmxLz+G305bTMTWByTcNJtbtjGg8xU9rtABX\nRETqC1WiQ6BFUxJt/vzhSvzW8uLVp0Q8gYajn9bog6aIiNQPSqJDoCqbRIuf9mRx+YsLmPVTGr8e\n3okuzZIiHRIAsa5AEp2rdg4REakn1M4RgsSiKlu22jkkgj5ctov/e2cZFstdI7oy/syOkQ6phMNh\niHM71fIkIiL1hpLoEBRvaaxKtERCRk4hr87fzFMz19OiQSxv3jiIzk2jowJ9tASPU2MgRUSk3lAS\nHQK1c0ikFPr8XPnyd6zalck53Zvy9BX9SrbYjjZxMU5yVYkWEZF6Ijr/No4yxZutZGvRlNSwZ2dt\nYNWuTB4c3ZNrIjzGriLxbpc+aIqISL2hhYUhcDkdeFwOzcCVGvXtujSemrmen/duEfUJNBRVotXO\nISIi9YSS6BAleFwacSc15mB2ATe9sYj2jeN59LLekQ4nJPExWlgoIiL1h5LoECV4lCBIzdh+IIef\n/2suBV4/vz2ve8nC1mgXH+PSz4iIiNQbteNv50jxecHhBGNIiFElWsLP57fcO205Ow/lMunaAZzT\no1mkQwpZoBKtnxEREakflESXZ+nbMP3XMGEZNGxPgkeLpiT8Js3dxIJN6dxzbtdalUCD2jkk/Ap9\nheT58ijwFZDny2PZvmWsTl/Niv0rKPAVRDq8kDSOa8zjwx/H4/REOhQRqSIl0eVxxgT+6c0HAj3R\nGbmFEQxI6rqt6dk8+vlPnNmlCb85u3Okw6k0jbiTE7U/dz9r0tewNXMrWzK3kFOYQ74vn/25+8nI\nzyDfl0+uN5f0vPTjznUYB90bdadRbKMIRF45hwsOM3vHbJbsW8KpLU6NdDgiUkVKosvjig38sziJ\njnGy61BuBAOSuuxQTgG3vLkYh8Pw2GV9MMZEOqRKS/K4yC7w4vdbHI7aF7+EX1ZBFgt2LeDbHd+y\n8/BO0vPS2Zm1kwJ/6Spyq8RWxDhjiHfF0zGlIx6nB4/TQwNPAxrFNiLGGUOMI4am8U0Z0HwAca64\nCP0bVc7hgsOcPvV0Fu1ZpCRapA5QEl2eY5Noj4sctXNImLw8ZzNr92Tx4OieNG8QG+lwTkhynBtr\nISvPS4N4d6TDkQjLKcxha+ZWdh3eRbY3m9nbZ/P1tq/xWi/xrni6NepG26S2nN7ydJrFN6Nro660\nTGhJi8QWdbbVITEmkR6NerBo76JIhyIi1UBJdHlcxe0ceUCgEq2FhRIOuQU+pizcxogezWrFPOjy\npMQHfmYO5RYoia6HNmdsZtKKSezL2cfWzK3sydmD3/pLXnc73FzS5RJGtBvBwGYDcTvr5++RAc0G\nMGXtFPJ9+XX2w4JIfaEkujxlVaILfFhra+WjdolOhT4/1726kPTsAm44o32kw6mSlLhAUnQop5B2\njSMcjNSYQ3mHeHrJ00xbNw2AHo160LNJT85POp8uDbvQPrk9STFJNIptRFJMUoSjjbwBzQfw+urX\nmb9zPme1PSvS4YhIFSiJLo+rqEJQXIn2uPD6LfleP7FuZwQDk7pk6g/b+X7zAW46owNDOtbuzDOl\nqPp8SAtw6wVrLavSV3HnrDvZm7OXYa2H8btBv6NNUptIhxbV+jfrD8CC3QuURIvUckqiy1NcifYd\nWVgIkFPgUxIt1SKv0MdL326kXeN4/nhBj1r/hKM4idYUm7pv0Z5FPL/seRbuWUicK45JP5vEoBaD\nIh1WrZAck8yZrc7k2x3fMnHQxFr/cy9Sn2nHwvKUVKIDSXS8J/B5Q7OipTpYa/nzB6vYfiCXP4yq\n/Qk0QIO4QE90Rk7tmNcrlTdt3TSG/XcY139xPT/u+5Gx3cYyffR0JdCVdG67c9l5eCdL05ZGOhQR\nqQJVosvjLN3OkRx7pMqmh5VSVW8s2Mp/F23n5qEdOa9n80iHUy0aHNUTLXWHtZZlacv437r/8eHG\nD+nZuCfje43nki6XkOBOiHR4tdJ57c/joYUP8cmmT+jXtF+kwxGRE6QkujzHVKKLE4RMPaqWKlq4\n+QCPfL6Wfm1TmDiye6TDqTYxLgfxMU71RNch83bO46GFD7E1cysAozqM4i+n/YVYV+0cwxgt4t3x\nDG4+mHk750U6FBGpAiXR5TlmOkdxEq1+T6mKz1bs5jdTlpAS5+bRMb3rRBvH0VLi3KpE1wFpOWn8\n9tvfsnjvYprGN+V3A3/HiHYjaJ5QN56aRINTW57KNzu+Yd3BdXRt2DXS4YjICVBPdHmOrURr0ZRU\n0eKtB/n1Wz/SPDmWGXcPo0uzujfuq0F8jH5GarnV6au57avbWLl/JWO7jeXdC9/l6pOuVgJdzYa1\nHgbAl1u+jHAkInKilESXx+EEh6ukJ1qVaKmKNxdsYczz82mSGMObNw6iUUJMpEMKi5Q4Nxm5WlhY\nG3n9Xt5a8xZjPx7LTwd/4qEzH+JPp/6JlNiUSIdWJ7VOas3A5gN5e+3bkQ5FRE6QkuhgXLFHNluJ\nceJ0GCXRUmmzftrHfR+sokeLZF6/YRAdUxMjHVLYpMSrnaM2WpG2gjOnnsnDCx+mRUILPr74Y85t\nd26kw6rz+jftT1ZBFu+tfy/SoYjICVASHYzLU1KJNsbQIM6tJFoqZV9WHg98uIqUeDdTbz6Vni0b\nRDqksGoQ59bCwlrG6/fy4HcP4vV7efjMh/nk0k9ok6wZRDXh+pOvB+DP8/+M16/xqSK1jZLoYFyx\nJZutAEqipdLueWcZOw7m8sy4fiUtQXVZg3g3GTmFWGsjHYqEIM+bx7WfXcuaA2sY33s8F3S8ALej\n7v8+jRYJ7gTGdBkDULJtuojUHkqig3F5Sto5AJKVREslzFq7jznr9/P787sztGtqpMOpESlxMRT4\n/OQV+iMdilTAWsvDCx9m+f7l3HfqfYzvNT7SIdVLfzr1TwD8b93/IhyJiFSWkuhgnEfaOSBQidac\naAmF32/54/sr6NAkgWuGtIt0ODWmeOvvQ1pcGPU+3/I5765/l96pvflF11/UuXGLtYXL4aJHox6s\nO7iO73Z/F+lwRKQSlEQHc0wlWv2eEqoPlu1kV0Yed53blVi3M9Lh1JgU7VpYK2zP3M598+6jVWIr\nnh/xvBLoCHv4zIcBuHvW3RGOREQqQ0l0MK7YUpXoFLVzSAjyvT7++cU6WqXE8bOTmkU6nBpVPE9d\nSXR0+/v3f8dhHLx07kskxyRHOpx6r2NKR9omtSWrMIuM/IxIhyMiIVISHYzLA94jj6UbJgQ2kvD6\n1O8p5Xtyxnp2HsrlH5f2qldVaDh6nrraOaLVkn1LmLdrHhd1uoi2yW0jHY4UuX/I/QB8u+PbCEci\nIqFSEh3MMZXopkkerIX9h5UgSNkWbj7Ai99uZOTJzRnapUmkw6lxKfGBTWRUiY5O+b58fv/t72md\n2Jo7+98Z6XDkKCc3ORmAd356J8KRiEiolEQH44op1RPdLDkWgL2ZeeWdIfVYgdfP3e8spXlyLA+P\n6V0v+0xTtLNnVHtwwYPsyt7FA6c9QGJM3d30pzZKcCcAsDRtqbYCF6klwpZEG2PaGGNmGWNWG2NW\nGWMmFB1vZIyZYYxZX/TPhuGKocrKqEQDpGXll3eG1GNPf7WOHQdzeejSXvViJnRZ4mOcuJ1GC3Cj\n0P7c/Xyw8QMS3YkMaj4o0uFIGZ4Y/gQA98y+hwKfnniKRLtwVqK9wD3W2pOAU4HbjDEnAb8HvrLW\ndgG+Kvp1dDpmOseR8V1KEKS0dxfv4NlZG7mgVwuG1ZOZ0GUJ7OwZo3aOKPTG6jcAeOW8V+rlU5La\n4Nx253Jr31sBOGXyKeQU5kQ4IhEJJmxJtLV2t7X2x6Lvs4A1QCtgNPB60dteBy4OVwxVVsaOhaBH\n1VJa+uF8/vbJajqlJvDE2D71PkFJiXdrYWGUsdbywYYPOLPVmfRo3CPS4UgQN/e6ueT7wW8P5snF\nT+K3WswuEo1qpCfaGNMe6Ad8DzSz1u4uemkPEL0zwFyxpSrRSbFujIGMHCUIcsSTM9eRmefl2av6\n43HVr2kcZWkQ51YlOsp8te0rDuQd4Lz250U6FKmA0+Fk7ri5Jb9+ZeUr9HuzXwQjEpHyhD2JNsYk\nAu8Cd1prM49+zVprAVvOeTcbYxYZYxalpaWFO8yyOWNK9UQ7HYaG8TGkZyuJloBv16Ux+bttXDW4\nLd2ba94uaJ56tLHW8tLyl2gc25iRHUZGOhwJQQNPA1Zcu4Jz250LgN/61dohEoXCmkQbY9wEEui3\nrLXvFR3ea4xpUfR6C2BfWedaa1+y1g6w1g5ITY1Qj6krFvxe8HlLDjVJjGH/YS0sFPD5LX/9eDWt\nUuK459xukQ4najSIVyU6mnyz/RvWHFjDnafcSYwzJtLhSCU8MfwJnhr+FACfbf4swtGIyLHCOZ3D\nAJOANdbaJ4566UPg2qLvrwU+CFcMVeYKTOM4ui+6SaJH0zkECCwm3LDvMBNHdS/ZqU8gJS5Glego\n8vbat2mV2Iqfd/x5pEORE3Baq9MAeGDBA9rNUCTKhLMSfTpwDXC2MWZp0dco4GHgXGPMemBE0a+j\nkyswF/rovugmiR5ttiJk5Bby4CerOalFMqNObhHpcKJKSrybw/leCrWzZ8QdzDvI4r2LOaftObgc\nrkiHIycgzhVHnCsOgDOmnsEdX99BoBMysHlOvk9FHZFICdufqtbauUB5YwrOCdd9q1VxJfqoJLpp\nkod9WXlYa+v9FIb67PX5W8jK8/LoZb1xOPT74GipRfPU92bm0bphfISjqd/eWvMWhf5CLu4cvUOQ\npGLzxs2j/+T+AMzaPosJsyawcM9CsguzAVhx7YpIhidSb2nHwmBKkugjiwtbpMSRV+jX4+p6LCuv\nkElzNzOiRzNObtUg0uFEncYJgb7bg9n192dkT/Ye0nPTQx5NFo4RZrneXN5e8zZntjqTLg27VPv1\npea4nW5WXLuCF0e8CAQS6eIEGuC1la9xMO9gpMITqbf0fC+YMirRxQnCgewCUuK1SCfc1qSv4WDe\nwZK+wGjw2rwtZOQWcsc5nSMdSlRqVPQzkp5ddx4zZxdmE+OIwe0sv/d9W+Y2CnwFvLv+XSavmVxy\nvE9qHyaPOvLrQl9hSVURoHVia3Yc3sFz5zzHma3PrLaYZ2ydQVZhFteffH21XVMi67RWp/Gvs//F\n7V/fDsB9p97Hg989yOOLH+fxxY/TPKE543uN5/Jul4cthqlrpxLriuXkxifTuWHd+DMwpzCHXG9u\npMOQYziNk5TYlEiHEZSS6GBKeqKPVKIbFlfZNCu6Rlz+8ZG/DC7qdBEPnv4gDhO5Byj5Xh9PzlzH\n0K6p9G4d3T/ckdIkMfDhs66sHSj0FXLq26cC8O5F79K1YVestfR+ozcAN558I5NWTir3/GVpy3jm\nx2cY3Xk0765/l1dXvlrq9R2HdwBw61e30qNRD9658J0qxWut5ZYZt7Bg9wJaJLRgQLMBVbqeRJfh\nbYaXat8o8BXwyA+PAIEnIA9+9yDTN0znkTMfoU1yGwDunX0vPZv05Nqe15acV+gvxGCO65XPLMhk\nZdrKUoULr9/Lvpx9LN67mL9///fjYuqd2ps/Dv4jYz8ey7QLp9Gt0YlPK9p0aBPTN07nyu5X0jyh\n+QlfJ1R7svdw7rRzw34fqbzWia35bEx0T6UxxQsUotmAAQPsokWLav7GG2bC5DFw4wxoMwiAFTsy\nuPDfc/nPLwdw7knRu09MbZBVkMX2rO2c1PgkIPCH9/vr3+fqHldzy4xb+H7P92WeN/+K+STFJNVk\nqCU+XLaLO6Ys4elxfRndt1VEYoh2OQVeTrr/C+49vxu3Dq+9laqZW2dy1zd3HXf88zGfc/675wc9\n98HTH+SiThexL2dfuX9B//2Mv/PishfZlrWNn7X7GV9u/bLktX8O+2elN0Z556d3ePC7B0sdG9p6\nKM+e82xLcMpjAAAgAElEQVSlriO1z/7c/UyYNYHlactLHZ88ajLpuelMmDUBgMVXL2b6humsObCG\naeumAdCxQUfuGXAPv/nqNzw5/Enu/ObOkvMv7nwxM7bOKNU6Eool1yzB5XBR6C/k9VWvk+BOYFjr\nYaTGp+I0zjILIYX+Qu7+5m6+2f5NybFeTXrxxsg32Hl4J+2S21HgK8DlcJWcn+fNY+X+lQxoXvYH\nxU82fcLfvvsbw9sMZ0L/CTSJa1LqQ4PP76Pvm30B+OVJv6RNUptK/XtKeCW4E7iw04URubcxZrG1\ntsIKhJLoYLbMhdcugGs/gg5DAdhxMIczHpnFo2N6c/lA/cBV1q9n/pq5O+fy0JkPMXHORCDwSPLC\nThcy6K1BZZ7z4cUfMn/XfB5eGBjkkhyTzLwr5tVYzMWstVz83Hwycwv56u5hWlAYRK8HvmBM/9Y8\ncFHPGrunz+/jq21fcc/sewCY0H8CIzuMpFViaB92fjrwE5d9dBmPDXuMc9qeQ/83+1d4zvhe4/nP\niv/wl9P+wuhOo1m+fzknNT4Jj9NT8p5er/cqdc5NvW5ifK/xxLtLL7osvn+xYyt6Gw5uYOa2mfRs\n3JMCfwFDWgwh15vLjK0zyqwOArx30Xvqh64n8rx53DfvPu7ofwej3hsFQKcGndiYsbFa7/P3M/5O\nt4bduO7z6zhceLjS51/Q8QIePrP0UK731r/Hn+f/ucz3//KkX/LG6jeOO/6HwX/gH9//A4DLu17O\nr/r8itT4I3tKHP206GiLr17MsP8OOy52Lc6UoymJrg7bf4BJI+CqadAlUE0qrrJNHNmdW4Z1qvmY\nqmhV+iraJ7cnwZ1wwtdYnrac/bn7Obvt2by77l0eWPAAMy+bSbOEQGXe6/ey6/AuGsc1xlrL5ozN\ntE1ui8/6GPbfYSHfZ0L/CVzf83qcjsBW2kc/dovEH3gfLN3JhKlLeXB0T64Z0r7G71+bjHhiNp1T\nE3nhmlNq7J43f3kzC3YvKHXMYFh+benqnLUWr9/L88ue5z8r/sNr57/GdZ9fV+Y1x/cazynNTqFf\n037k+fK4beZtrExfCcCP1/yI21HxfPDiP2P3ZO+hSVyToH3VD33/EG+vfbvk12e1OYvWSa25rMtl\njP5gdIX36tCgA9ZaHhn6SMkTHqmfhk4dysH8wGLD4a2H882Ob0q93r9pf3o26cmbq9+s8FpvjXqL\nDg068MmmTxjbbexxk6kK/YXM3j6bPql9OPt/Z1d4vXlXzGPSikmM6jCKGVtn8OLyF0teu6L7Ffxh\n8B949IdHQ4rtaEuuWYLTODlceJi1B9Zywxc3hHTeJ5d8QtvktpW6l9RtSqKrw+7l8OKZMHYy9Ag8\nUrDW0u2+z7n+9PZMHNmj2m6V78vnsR8e4/8G/B+xxb3YBP7ivX/e/dza91b6Nu0b8vWK/78aY3h9\n1ev8c9E/S73+6NBHGdlhJD6/ryRJPdqq/as4XHiYeFc8M7bNoHNKZz7f/Dlzds4p955Pn/U0fZv2\nrTBRbhbfjMyCTB4Y8gBvrH6DVemrgED/03uj32PToU30bFJ2BfPtNW/z0MKHqtx3V1nZ+V7Oe+pb\nkmPdfHT7GThVhQ7qmknfk5FbyIe/OSOs98kpzOG/P/2XJxY/Uer4RZ0u4sONHwKBXd96NOpBq8RW\nfLf7O26ecXPI159x2Ywa6cs81rHV61Bcf/L13NX/Lo3eFACeXPwkr6x8hV/1+RW39b2NhbsXsv7Q\nesZ1G1fqz/y31rzFpBWTmHHZDBbsXsDJjU8uWcx19N8jlXG44DCPLXqMCzteyIDmA8gpzGHw24Nx\nOVx4/d5yz1t89eJSu2oW/xzcePKN3NDrBv7+3d/5dse3XNfzOv699N8A3Nb3Np5dGmhZmjhoIqvT\nV/PBxiN7uH16yaek56WzOWMz98+/v+T4wOYDaRbfjI4NOjK+9/hK/ftJ3ackujqkrYNnB8KYSdDr\nyGPWU//xFUO7NuHRy/pUy23Sc9MZ/s7wUsf+etpf+XHfj0zfML3k2KeXfFqyUGTuzrn8euavgUA7\nRIcGHQC44YsbuLrH1SxLW8aK/cGrtb8f9HseXvgw/zjjH6X6jjLyMzhjaviSn6XXLCXHm0NSTBLW\nWl5Y/gKntzyd3qnHP3o71vas7Yx6bxRXdr+SiYMnhi3GYz05Yx1Pf7Wet24azOmdm9TYfWurie+t\nYMbqPSz6U/gW7JTVszykxRBe+tlLAEzfMJ375t0X0rXaJbfjo4s/whjDirQV/Gnen3jnwndKtWXU\npM0Zm7lo+kXHHZ87bi4NPA3YmrmVt9e8zZiuY1i5fyWjO40u88Ow1F9+66fAV1CqKBNpR/cgH+2P\ng//IpV0uLXNb+uzC7AqfnK5KX8W4j8eV+drRTy2ttQyYPICrelzF3QPurmT0Up8oia4OB7fC071h\n9HPQ76qSwyOfnkOrlDhevrZqq94L/YXcPevu4x6zBdOvaT981nfcApJQtEpsRUNPQ4a2GcpzS58r\nOe52uJl1+SwaeAIzj19e8TJP//h0udeZM3YODoeD22beRs8mPfndwN8x/svxpRYC/vW0v9IntQ9t\nkttgMPy490deXfUqD57+IE3iqpaE/nb2b5m9YzbzrpgX0uP0qsr3+jjrsW9o0yie/94yJOz3qwue\nnLGOZ75ez/q/jcTlDM80lWOrtb/o+gvuH3J/0PcAjGg7gpnbZnL3KXfXivFvhb5CHlr4EOO6j6Nr\nw66RDkekSjYe2shd39zFM2c9Q+O4xsS54qplN82jW6GePedZbvvqNm48+UbuPOXOCs4UOV6oSbRG\n3AVTxmYrAI0S3FUecWetPW7h0nsXvce1n11LA0+DkrFXg1sM5uWfvcwNX9zAD3t+YMm+JSXvj3HE\nUOAvHUeKJ4VD+YcAuLrH1SXzQosr1cWOTqIL/YWcMfWMUo/FIDAFY3X6agY2H8hnmz9jaOuhFPoL\nSx71vTnqSL/ay+e9zKM/PIrLuMr8hD+oxSAGtSh74WBlDW8znM+3fM6a9DUhVa+rasr329iVkccf\nLqi+9p26LjXJg7WQnl1As+Tqr4QdvYJ/8qjJ9G7Su8xHzkdXoZ7+8WleXvEyjw9/PKJjEivL7XQf\n9+FApLbqlNKJDy/+sNqvO3HwRC7vdjlN45uSFJOkhYJSI5REB1PGZisAzZJimbth/wlv/b05YzN/\n++5vpY5NHjWZLg27MP/K+WWe8+KIF3l/w/ulRlh9d+V3OB1OvH4vp0w+pWRBRlZBFk7jPG71/9FW\nXLsCn99HRkFGSQ/z0Qk0QFJMEoNbDAYCK6orcu/Aeyt8T3U4o9UZJMUk8dgPj5VK5MMhI7eQf8/a\nyOAOjbigV4uw3qsuaVq09feuQ7nVkkRP3zCdrIIsmsU3K5m+AfDlmC9pkRja/5cJ/Scwof+EKsci\nItGpU0rtW+wvtZuS6GDK2GwFoE+bFN5bspPdGXm0TImr9GWP7nX8duy3NIxtWOE5bqeby7tdzpgu\nY47rfYxxxpT61B3qDGWnw0mj2EbMunwW9357Lz/s+QGA0Z1Gc++gmkmIT0QDTwOu6nEVLyx7gZ8O\n/BTWBYbPfbOBA9n5TLp2gBZsVUKbRoEPcLsz8uhXxWt9uPHDcnubQ02gRUREqpuS6GCKFxX5SrdM\ntG8SWOSw81BupZPoTYc2lXz/5PAnQ0qgS4UUhsVDTeKa8Mp5r5zwSuxIuKr7Vby68lX+t+5//OnU\nP4XlHhk5hUxduJ1zejSjTxvtTlgZqUWV6H2ZeRW8s3zFGzUc25/frWE3fjr4Ey+MeKFKMYqIiFSF\nkuhgHA5wxhxXiW6WXJwg5Jd1VlA3fXkTAG+OfLNSI+tqQm1InoulxKZwXvvz+GjjR9wz4B7iXJV/\nIhBMdr6X615byOF8LxPO0WYVldUoPgaHCfREnwi/9fPHOX/ksy2BLV+v7nE1ozqMwmd99G3a94Rb\nqURERKpLSKtrjDGnG2MSir6/2hjzhDGmXXhDixJOz3E90U2TAm0eaVmVq7I9MP8B0nLTAOiTWj3j\n8eqzizpdRI43h5lbZ1b7tSfN3cySbYf46+ienNyqQbVfv65zOAyNEjzsP1z5D5p7s/fS540+JQn0\nDSffwD0D7qFXaq+SD55KoEVEJNJCXaL+PJBjjOkD3ANsBI7fh7MucnmOq0SnxLlxOQz7skJPEObs\nmMO7698F4K5TtCFCdRjYfCCtElvxxZYvqvW6G/Yd5sXZGxnQriFXDtIuVieqSWIMaVmVq0TvyNrB\niGkjSn79p8F/4q5T7qqWEVgiIiLVKdQk2msDDbOjgX9ba58FQlu9Vtu5Yo+rRDschiaJHtJCTKKX\n7FvCrV/dCsC57c7lhpND24pUgnMYB0NaDmHhnoUcyjtULdf0+y3Xv7YQl9PBU+P66sNOFaQmeSr9\ntGbkeyNLvp96wVTGdh9b3WGJiIhUi1CT6CxjzETgGuATY4wDCP8uF9HAdXw7B0DrhnFsSDtc4el+\n6+eXn/0SgNv73c7jwx6v9hDrsyu7X0meN4/XV79eLdf7YcsBth/I5fazO9O6YfkjAqVimXlelu3I\nCPn9q9NXl3z/zs/fKXfrdxERkWgQahI9FsgHbrDW7gFaA4+FLapo4oo9rp0DoGNqAku2HcLnD77j\n47R100q+v7n3zapsVrMuDbtwfvvzeXXlq2w8tLFK17LW8tBna0mOdTFObRxVlpoYWIB7KISNiSat\nmMTYjwNV598P+j09GmtjGxERiW4hJdFFifO7QNHMN/YD74crqKjiiimzEt2ucWDM3b4gj6u9fm/J\n5ijfjv02PPEJE06ZgM/6+GTTJ1W6zrs/7mTp9kPccU4XEj3qwa2qcQPbALB5f3aF733qx6cAiHfF\nc1WPq8Ial4iISHUIdTrHeGAa8GLRoVbA9HAFFVXKqUQXT2zYcTC33FP/veTfQGDr7srOg5bQtUps\nRb+m/ZixdUaVrvPvr9fTu3UDbji9Q8Vvlgq1bRxoh9l2ICfo+5alLQNgbLexfH/V92GPS0REpDqE\n2s5xG3A6kAlgrV0PNA1XUFElSE80wI6D5ScI76x7Bwhs2S3hNaDZALZkbmFTxqaK31yGFTsy2JKe\nwy8GtMHhUMtNdWhT1FMe7IMmwNydcwEY32t82GMSERGpLqEm0fnW2pLGRmOMCwjeDFxXuGLBd3wS\n3apop8IdB8pOEA7lHSKrIItm8c3CssuglHZx54sBuG9u2dtDV+T1BVtIiHEyum/LaoyqHsjaCzMf\ngKlXgd9f6qW4GCdNEj1sSy//g2ZOYQ4vLAvsPNgsoVk4IxUREalWoTZ+zjbG/AGIM8acC9wKfBS+\nsKJIOZXoWLeT1CRPuVW2jRmBRW6397s9rOFJQNvktlzd42omr5nMhoMb6Nywc8jnFnj9zFyzl/N6\nNic5tn4MnakWq96HaTeALUqe8zMgrnTbUttGcWwP8rTmxeWBpzRtk7SQU0REapdQK9G/B9KAFcAt\nwKfAn8IVVFRxHr/ZSjGXw/DR8l1lvjZv5zwAujfqHrbQpLTLu10OwKebP63UeZ+v2sOhnEIuUhW6\nYj4vfP03+NcA+N91kNoD+lwReK3w+A+UbRrFl9sTba3llZWvAPDBxR+EK2IREZGwCHU6h99a+x9r\n7S+stZcVfV9P2jnKrkQD7M7II6fAx7H/KXYd3sV/VvwHgHbJ9WN39GjQoUEHeqf25qttXx33/ySY\nN+ZvoU2jOIZ2SQ1jdHXA7mXw7ED49jFIaALDfgdX/Q86nR14vYwkum2jeHYdyiXf6zvutX05+wA4\nq81Z2pFQRERqnaBJtDFmhTFmeXlfNRVkRJUznQPgN2cFWgYyc72ljj/2Q2CE9qNDHyXWFRve+KSU\nke1HsiljU8gLDLfsz2bxtoOM7tNKCwqDWfMxvHoB5ByAi5+H6z+Ds/4ADVqBO7A+oKwkukeLZPwW\nftqTddxrxVM5rut5XTgjFxERCYuKKtE/By4M8lX3uTzgLXuziJNbJQOU6vnMKcxh3q55jOkyhpEd\nRpZ5noTP0NZDAXhv/Xshvf/DZbuwFsYWzTSWY2TsDPQ9//eqwMz0a96HvlfC0ZsGBUmiuzZLBGDD\nvtK7e/qtn3tm3wNA79Te4YldREQkjII+Q7XWbq2pQKJWkEp065IRXjklc6PfWP0Gud5cLuh4QY2F\nKEe0TW7L0NZDmbl1Jv834P+C7hCZne/l5TmbGNShEW0aaYvvUg5sDkzdWPMRWB90GwWXvXIkYT6a\nqziJPr73uV3jBFwOw8a00kn0mgNrABjSYohaOUREpFYKdbOVLGNMZtFXnjHGZ4zJDHdwUcHlCSQR\nPu9xLxXPwd1eNObOb/08u/RZAAY2H1hzMUop57Q9h13Zu5i/a37Q9708ZzOZeV7uPrdrDUVWS+xf\nD6+OgrWfBBYN3vodXDGl7AQaglai3U4H7RrHH1eJfn/9+3icHh4b9lh1Ry8iIlIjQl1YmGStTbbW\nJgNxwBjgubBGFi1cRTudl1GNbhDvJtHjYv7G/QDszNoJwIUd60enS7Qa0W4EAF9s+SLo+2as2UOM\ny8HA9o1qIqzaIXs/vDoSvLlw7Udw8bPQtEfwc9xFVfzCsrf37pSaWCqJttYya9sshrUeRgNPg+qK\nXEREpEaFOuKuhA2YDpwXhniiT/HCwHImdCTHusjOD0we2Jy5GYAxXcfUSGhStuSYZH7W7me8v+F9\nCn2FZb5na3o2K3dmcuvwTji1oDAg/zBMvxWy0+Ca6dBuSGjnuYP/jHRumsjW9BwKfYF50nuy97Av\ndx+nNDulOqIWERGJiFDbOS496usyY8zDQNmNwnVNcSW6jF0LAYZ0alIyB3f6humAZkNHg1NbngrA\nD3t+KPP1hz9bi8thuLRf65oMK3r5/TBlHKz/As64C1r2Df1cV/ntHBBIor1+y9ainQuLZ0P3Se1T\npZBFREQiKdRK9NETOc4DsoDR4QoqqjjLb+eAwBzcvVl55BX6mLF1BgAJ7oSaik7KcUGHC3A73Mze\nMfu41w5mF/DV2n2c3rkJbRtrQSEAn94DW+bA6RNgxAOVO7ek5an8SjQcmdDx4cYPAejWqNuJRCoi\nIhIVQloWb629PtyBRK0KEoQOqQlYCxv2ZeE0Tn7e8ec1GJyUJ94dz2ktT+PttW8zof8E4t1HkuXJ\n322lwOtn4ig9MQBgw1ew6BXoeSmM+Evlzy9eWOgtuxLdMTWQRG9MO4zf+nE5XFza5VJN5RARkVot\n1HaO140xKUf9uqEx5pXwhRVFSnqiy65En9QiCYDHv/4On/XRp6keUUeLy7peBpReYOj1+Xnm6/UM\n7tCI7s2TIxVa9Nj4Nbx7IzTsABc/V3r+c6icMYCBwrJ/RhI9Llo0iGXDvsNszthMZkEmfVMr0S4i\nIiIShUJt5+htrT1U/Atr7UGgX3hCijIVVaKbBKpsi9MCvbddUrrUSFhSsaGth9KxQUdeXvFyyTbg\nczfsp9BnubhfqwhHFwVmPwpvXhL4vrwZ0KEwJug8dQC/tby/ZCfT1k0DoF/T+vHHh4iI1F2hJtEO\nY0zD4l8YYxoRYitIrVdBJdrpMFzSrxUO9wFAiwqjicM4uK7ndWzL2sa8XfPw+vw8/81GGsa7ubR/\nPU6i/X745B6Y9XdoPRDuXAmt+lftmu7gSbTXZ8EUMHnNZADaJber2v1EREQiLNQk+nFggTHmQWPM\ng8B84NHwhRVFYop6aQuO342tWM+WyeSbHXRI7kRscdItUeHnHX9O84TmPL/0eSa+t5zvNx9g/NCO\neFzOSIcWOd+/AD+8HNiF8JcfgCex6tesoBL9/q2n44zbBkCcKy7oTpIiIiK1QaibrbwBXArsLfq6\n1Fr7ZjgDixoxgZ5nCg6X+5aTWzXA4dlDI7eqa9HG7XQzvtd4lu9fzvsbPuCaU9tx6/DOkQ4rcg6n\nwZzHA7+vL38TYqppkowrttyeaIC2jeNp1CgNgM/HfF499xQREYmgymy20gjIttb+G0gzxnQIU0zR\npTjJCJJEt23swBFzCJevRQ0FJZVxYYfRuHzNiG32Mb86q2Wkw4mcrfPhhdMhLwOueBuc1diR5Y4r\ndzpHsaTkvRhfCo1itUOkiIjUfqFO5/gz8DtgYtEhNzA5XEFFleJH3fnlJ9F787cAkJfdtAYCksr6\nfFUamTsuwjjzmLaxfjxAOc6mb+C1CwIV42vehw5Dq/f6Lk+5i2+LFTi3UZDdioycsneRFBERqU1C\nrURfAlwEZANYa3cBSeEKKqq4K65Er05fDcC+/ak1EZFUgtfn55mvNtA5uQ/ntD2Hl1e8zNS1UyMd\nVs3auzqwnXdSS7jpK+hwZvXfwxVX7o6FAHuz95Lh3YU/vxmXPj+v+u8vIiJSw0JNogtsYEaYBTDG\n1J8t+RyOQCJdkF3uW9akr8Fjkli3y1Dg9ddgcFKRT1bsZvP+bO4a0ZVHhj5Cz8Y9eWn5S3j93kiH\nVjP2r4dXR0J2GvziVUgM0wc9lyfowsIbv7wRAF9OZzamZZeMHBQREamtQk2i3zHGvAikGGPGAzOB\n/4QvrCgTkwD5WWW+5Ld+Ptj4ARg/YFi5K6NmY5NyWWt56dtNtGgQy89Oao7H6WF87/Gk5abx2ebP\nIh1e+OUehCnjwO+D6z+DNoPCdy93fNBKdEZ+4OdizEmBNpLtB4L3T4uIiES7UKdz/BOYBrwLdAPu\nt9b+K5yBRRVPYrmV6O1Z2wHo1SSwA9v6vWUn21Lz5m7Yz6pdmdw6vBMOR2Ck2tBWgSTuk82fRDK0\n8PN54b2bIX0DjP4XtB4Q3vt5EoO2PCW4ExjZYSTXnRZYj7x424HwxiMiIhJmIU/nsNbOsNb+1lr7\nf9baGRW93xjzijFmnzFm5VHHHjDG7DTGLC36GnWigdeomIRyE4SfDvwEwN0DbifG5WDNbiXR0WLq\nwsAHnKN3J3Q73dzU6ybm7ZzHlowtEYoszKyFj+6A9V/CaXdAz0vCf8+YxHKf1uR6c9l1eBcdG3Sk\nW/MkkjwuFm05GP6YREREwihoEm2MyTLGZJbxlWWMyazg2q8B55dx/Elrbd+ir09PNPAaFZNUbiV6\nc8ZmADo37EiB189r87fUYGBSnrxCHzPX7OWKQW1IinWXeu2qHlfhMi6eWfJMhKILswX/hqVvwZDf\nwLl/rZl7xpS/bmBLxhYslo4NOuJ0GPzW8tb32/D71RctIiK1V9Ak2lqbZK1NLuMryVqbXMG53wJ1\n45ltkJ7onYd3khqXSpwrjtM7NwYgt8BXk9FJGT5Zvpt8r59zT2p23GtN4powpOUQZm+fzd7svRGI\nLox2LYEv/wQt+sKIv0BN7QzoSQosLPQdv2BzU8YmADo0CLRyjOwVmKe+do+e2oiISO0VcjuHMaaP\nMeY3RV+9q3DP3xhjlhe1ezQMcr+bjTGLjDGL0tLSqnC7ahCkJ3rhnoW0Sgy0CxT3e67eXVGRXsJt\nzvrA75nTOjUp8/W7T7mbAn8Bn26uHQ9DQuItgHdvAocLrvxv9W6mUpEgmxJtztiMwzholxzY0fOO\ns7sAsGS7WjpERKT2CnWzlQnAW0DToq+3jDG3n8D9ngc6AX2B3cDj5b3RWvuStXaAtXZAamqE5y/H\nlL9oKjM/k3h3PACdUgOJxEfLdtVYaHK87Hwv05fu4tL+rYh1O8t8T+eGnemc0pnnlz1fd8at/fBy\nYCHhyEchqXnN3jumaFOiMj5sbsrYRJukNsQ4YwBo0yiOxgkx/LC5bjyoEhGR+inUSvSNwGBr7f3W\n2vuBU4Hxlb2ZtXavtdZnrfUTGJEXxplb1SgmscwdC7MKssgqzGJwi8EAtGscSKLVFx1ZX67eA8D5\nPYMnksNaDyPXm8uK/StqIqzwOrQdZj8M7c+EgTfW/P0rqEQXt3IAGGM4p0dTZqzey+H8ejKvW0RE\n6pxQk2gDHN3o6ys6VinGmBZH/fISYGV5740qxeO7jqlY7jocqDgXt3M4HYbxZwaShaXbD9VsjFLi\ni5V7aZbsYUSP4/uhj3ZjrxuJc8Xx3NLnaiiyMPEWwCvnQ14GnPPnyMTgKdrA9JgPm16/ly2ZW0ol\n0QBjB7Yhu8DHXf9dWlMRioiIVKtQk+hXge+LRtQ9AHwHTAp2gjFmCrAA6GaM2WGMuRF41Bizwhiz\nHDgLuOvEQ69BMQmAhcKcUod3Ht4JQOvE1iXHfnNWF2JcDt7/cUdNRihFdh7K5fNVe/jZSc1LZkOX\nJykmiat7XM38XfNJy4lw331VfHoPZO6Anz8JbQZGJoZyKtE7snbg9Xvp2KBjqeN92wSWQ8xYvRef\npnSIiEgtFOpmK08A1xOYtnEAuN5a+1QF51xhrW1hrXVba1tbaydZa6+x1vay1va21l5krd1d9X+F\nGlBOv2fx1IGWiS1LjjWId3NG5ya8vmArX6+tY5MfaoGv1+4DApXOUIzqMAqLZdr6aeEMK3yWTYUf\n34BBt8CAGyIXR8nPSOkkemPGRoDjkminw/D0uMAGRct26KmNiIjUPiFP5wA2A98AcwFjjOkfloii\nUXGCcMyYu6d/fBqAFE9KqeMTR3YH4IbXFpHv1bi7mvT5yt20axxPz5ZBJzCW6NywMz0b9+SzzZ/V\nvgWGOxfDh3dAgzYw7HeRjaWcD5o/HfgJg6FLwy7HnXJKu0A1etKczWEPT0REpLqFOp3jQWA58AyB\niRqPA/8MY1zRxVN2gtAothEQWCh1tC7NkrjpjEAP6Jb9pVtAJHx2Hcpl3oZ0zu/Z/Lj/J8GM6z6O\nzRmbWbR3URijq2Y5B+B/10NsA7j5G0hoHNl4PGV/0NyRtYNmCc2Ic8Udd0qrlMCxT1bs1sYrIiJS\n64Raib4c6GStHW6tPavo6+xwBhZVyun3dDlcjO40usxTRhRt8rFhX9mj8aT6FU9FuaB3i+BvPMb5\n7c8n0Z3Ix5s+DkNUYTLjPsjcBZe+BAllz8KuUeX1RB/eUWrNwNGMMVx3WnsArn11YTijExERqXah\nJhriL3MAACAASURBVNErgZQK31VXxRRNHjiqEl3gKyAtJ61kMsexOqUGKnP/+HRN2MMT2JuZx6vz\nNtOlaSK9W1fut2qsK5YzW53JjK0zyCmM8icHeRnw8d2wZDIMuhk6nRXpiAKKZqVTcMzi26yd5f6M\nANz9s64AzFm/P2yhiYiIhEOoSfRDwBJjzBfGmA+Lv8IZWFQp41H1nuw9WGypRYVHS03yAIFpEbWu\n17YWeuu7rRT6LE+O7XtC54/rPo6sgiw+3/J5NUdWjXb+CM/0h0WToOelMDzCfdBHczjBFQeFRz5o\n5nnz2Je7j9ZJZVeiAZJj3VwxqC0AB7ILwh6miIhIdQk1iX4deAR4mCM90eXuNljnlPGoesfhwAi7\nYFW2G04P9EX/5u0l4YtNAFi45QAtGsRycqsGJ3R+v6b9aJHQgg82fBB9H3r8Plj1PrxyXmDM4lXT\n4BevBvqho0lMfKlK9K7swBz1YEk0wOi+gQ+iz3+zIXyxiYiIVLNQk+gca+0z1tpZ1trZxV9hjSya\nlDF5YP3B9UDwJPre87sBgYVT2pktfPZl5fHdpgNc2KfspwKhMMZww8k38OO+H3lv/XvVGF0VWQv/\nvRr+dx00bA+3zIEu50Y6qrK5E0r9jOzICnzQLK8nutjgDoEFuv+Zs5lLnpsXvvhERESqUahJ9Bxj\nzEPGmCHGmP7FX2GNLJqUjLg7UonecChQNUuNTy33tFi3k/t/fhIAvR74Inzx1XP//OInAC6qQhIN\n8Iuuv6BzSmeeWfIMed686git6pa+DT99Guh//tVcaNI50hGVLya+VDtH8ULNtsltg55mjOGWYYE5\n0ku2HeKdH7aHL0YREZFqEmoS3Q84FfgH9XHEnSsGnDGl2jm2Z22nW8NuuByuoKdeM6QdECgofrB0\nZ1jDrI+2pmfz7o87ue609ifcylHM6XDy2wG/5UDeAT7cGAUt/3tWwCf3QJvBcP7D4PJEOqLg3KXb\nObZkbAGgoadhhadOHNmDF685BYB7313OrkO5YQlRRESkuoSaRH9dPNoOGFnvRtxBoC/6qCR65+Gd\ndGvUrcLT3E4Hz14ZKNpPmLqUJ2esC1uI9dGr87bgchhuHd6pWq43qMUgmsQ14fllz7M/N4ITIwrz\n4K1fBH7fXf5GYOFetItJCPRsF2kU14iTGp8U8szu83o2L/n+tIe/ZqcSaRERiWJBk2hjzO+MMUOA\nMUcdnv//7N13eFTV1sDh355MekglCZ3Qe0e6Ih0RVBQbFvRasV+veMWKqIgNy2cXrxW7ICIKIoIU\npYv0TugQahJSp5zvj51K2kwyMydlvc/Dc2ZOZs5ZYTLJmn3WXtu7IVVSAbXy6j0Nw+BExglqB7vW\nn/fijnV59epOALy+cCdfrNzvtTBrEsMwWLLzOD2bxhAXHuSRY1otVt4a9BYpWSk8vuxxcyYZpp+C\nz6+A1CNw/oNQq07Zz6kMAgrXRJ/MOElscMnlTsWZ98D5ebf7Tv2dXzYe8Vh4QgghhCeVNRK9DbgS\naKqUWqqU+gCIUUqVPQRb3QSE5rW4S85Kxu60u5UgjO7SgL7N9apyj87a6JUQa5p1+0+z53gaI9p7\nNslsG9OWG9rewPLDy5mf6ONadsOAeY/AvmUw9Fnofbdvz18R/iFFkuiYYPdWUmxdJ5ylD+f3vh4/\nYx2frdgnKxoKIYSodMpKos8AjwK7gAuB13P2P6KUqlkj0oFheQlC7mV+V0eic824tRfhQbqGeuPB\nZM/GVwN9v+4QQf4WRlZwQmFxbm5/M80imvHYssfYk7zH48cv0eZZsOFr6Hw99LnXd+f1hICQvHIO\np+HkdOZpYoLcX468YXQI254ZTo8E3bXjiR828e6S3exKSmXHsdQyni2EEEL4RllJ9DBgLtAMmAb0\nBNIMw7jZMIw+3g6uUilQE52UkQS4n0QDfHZLTwBGvbmM5btklbbySs208cPfhxjZsR5hgaVP7iyP\niMAIPhj6AVaLlXfWv+Px4xcr/RT89ADEtYNRr/nmnJ7kH5o3sTA5Kxm7YXd7JDpXkL8fn97Sg8u7\n6BaSL87bzuBpSxj66hKem7uFDk/NZ/2BMx4LXQghhHBXqUm0YRiPGoYxCEgEPgP8gFil1DKl1Bwf\nxFd5BITltbjL7X9bN6yu24fp2CC/g8R101eSkmnzTHwVkJppY9qCHSQ8MpeER+YyfekeMrIdZodV\nqs9X7Cc928H1vRp77RyxIbFc1vwyFu5fyK7TXl4IxJ4NM2/Ty3qP+RD8/L17Pm8IDNMfNHPmDADl\nTqJBJ9LTru7MIxe1LrT/g6V7Sc2yc9lb0lNaCCGEeVztzjHfMIw1hmG8Dxw0DKMfcLMX46p8AvMn\nFm44voHooGjqhbpfRqCU4vvx+YP4HSf9SsIjc0k8kVbKs8DpNFiw5VheopvwyNy8OlGH02DwtD/4\ncNleAGwOJzaH06V4UjJtdJj0K28s3Jm379m5W+n+7AJ3vzWfScuy8+GyPbSpG06nBt5dte/2jrcT\nbA1m2tppXj0Pq96DXb9Br7sgro13z+UtQZFgOCArlUNndTvHOiEVr1e/s38zHhjcgjv7N+O/wwsn\n1CfPZlX4+EIIIUR5uHQd3DCMhwvcvSlnX82qRQgIhWxdj3ks/RgNazV0uXXXubo1jmL3lBE0e/Tn\nvH0XvryYFRMHMX7GWhpGhfDjP3rJ5DHdGvDylZ2496u/mbuhcKeCy9/5s9Al7Wd+2sKCLUdZsecU\nAI9f3IZLO9fH308RGRJQ6LltnphHhq3waHPPJtGs3Kufm5btwDAMDp3JoH5kMBsPJdO2bjgOwyDQ\nWny7tfeX7MbhhPEeajdXkkXbkzhxNps3x3Yt92vgqpjgGP7V/l+8tu41lhxcwgUNLvD8SZwOWPVB\nTj/o5z1/fF8JzukHnXGa4xnHAagT6plJnw8Mbpl3e/yFzfhu7UEe+vYf+r+0mJ/u7UdC7dAyj/HV\nqv18tDyReQ+c7/WfGyGE7x1JziAqJIAg/yrQElRUC24XkxqG8Y83Aqn0AvInFiZnJRMfEl+hw/lZ\nFFsmD6Ptk/ndH3o9vxDQq7bl+m7tQb5bezDvfligFYfTIMPmKLYmNDeBBj2i/OzcrQA0ig7hvIRo\nbA4n5zWJLpJAL39kIPUjgwF4Yd423lm8myYTf6Y4WycPJ8jfwtNzthAfHsT4C5sxec4W/rd8b97z\nP7rpPM5rEk1YoBXDMNh2NJXPV+zj4WGtiQipWKnC4u3HCbBa6NIoskLHcdW1ra/l0y2f8vmWzz2f\nRBsGzLkfzuyDIZM9e2xfK5BEn0iveDlHacZ0a8BD3/7D2Sw7F768GIDnL+/AtT0Kr47Y9sl5pJ9T\nmvT4D5uYsXI/r1/TmUs71/dKfJ7kdBp8uGwvw9rVoVFMiNnhCFEhyRk2Xpy3jf8MbUVUzt8CT3yo\nfXvxLl6cp1ev/eHuvlz21nImDGvF3QMq8SqvospTpvTBdVP37t2NNWvWmBvEHy/Bomfh8eMM+eFi\netbpybP9nvXIoQ+cSuf8FxcV2nf/oBYs3p7EPwW6eCz49wW0iK8FwE8bDnPPF38Dernri3LavI2f\nsY5BreP4+8AZTqVll3reSzvXY/b6wzx9STvG9UnI25+UmkmP5xZ64lsrVuLUi7E7nFj9dDXRzxuP\n0L1xlEu9ng+fyaDP1N+5qnsDXhzTyWsxnmva2ml8tOkjPh/xOZ1iPXjerXPg6+uh5XC45kuwuFph\nVQklLoePR8ANP/BM0jIW7FvAkmuWeO10X6zcX6Rd5MiOdXkzZ3GjXzcf5fbP1rp0rD7NYvjitl4A\nbM/5wPf0Je2wWMwZsT6SnEHv538vsn/L5GGEBFhJSs1k3b4zdGscxfoDZxjcJk5G10Wl53QaNH20\n6ODMBzd2Z2DrOPyKeb8ZhlHmz/aupFQGTyv+d03i1IsL3e/z/ELG9mzEPQNbuBG5qGmUUmsNw+he\n5uMkiXbRind0/96H93LezGFc0/oa/tP9Px47fHK6jXEfreKTf/UgIjh/pHb70VTGfrCCKZd3KLSi\nW1mcToMzGTaiQvzzRt4KemhoS+4Z2IKUTBu1Aq1Ffkkt33WCpNRMwgL9+XDZHro2iuLjPxOLjOoV\n9OKYjnRpGMmQV0tPnHo1jWZX0lneu6EbHy7by88bjwIwuE08717flTMZNmqHFb/E9YyV+3hs1iZm\n392XTg19MxIN+urD6NmjqRdWj88u+swzCYthwLvnQ9px+PemqjmZsKBjW+Cd3nDlx9x5ZD6nMk7x\nzahvvHrKpJRM3vljNx8tTyy0/8mRbZn80xYAru3RkBEd6tK5YSTLdp5g/Ix1Lh9/7eODiSnhZ9Gb\nEh6Z6/ZzXr26E6O7NPBCNKIqeveP3Uz9ZRuTRrXlpr5N2HDwDMdTsxjUpvBV1O/XHuT7dQeZcWtP\nNhxMpnlcGKEV7HiUaXPw9eoD9GgSTZu64WTbnZz33G/Ehwey49jZYp8TWyuQFRMHFUqkc98HE4a1\n4rbzm/L1al2SdfeA5vznW31RfOrlHXhkpv4w/dDQlvyx4zirE0/nHeOviQNJzbSTmmnjinf+ytt/\na78mADSKCeHG3gkV+n5F9SNJtKet+xR+vJeMe1bTY+4VPND1AW7pcIu5MZXD4u1JtKkbTnwFVvhb\nuPUYh89kcEPvBF6av423Fu3m9//0p2lsGKB/gf61+ySt69bCohR/7z9Ny/hahARY80pWXPHOdV25\nqEN+B5Qz6dl0nrwApWDPlBE+H3n7dse3TP5rMs/2fZZLm19a8QMufQUWTobhU6HX+Iofz2wpR2Ba\naxj5KqMPzaFRrUa8PvD1sp/nIaPfXl6oFCrXuSNRmTYHTsNgwncbmLvhCJMvbceTszcXe8xJo9oy\nsHU89aOCScu289Tszcz6+xC1gqxseGqoWz+DyRn6A2tpo9sfLNnD12sOsCtJJxoNooJpERfG3QOa\nM+bdv0p8Xq6LO9TlbJadJ0a2pXlcmMuxieqn09O/kpyhuz/d2q8J03Mmnue6pV8TmsWGFbv4V/fG\nUazZpxPRprVD+eK2XkSHBvDn7hNc2CquyOOdToNNh5NJqB1Kx0m/lhnbqkcH8fRPW7i0Uz2+X3eQ\n+ZuP5X0tN+n/37K9eR+EXbXtmeEE+Fk4dCaDxJNp3PDhKpeet+qxQcTV8syqt6J6kCTa0zb/AN+O\n48i42Qxdci9P93may1tcbm5MVdBlby1n/YEz/HtwS179bQcA9w1sznW9GtNzSvEJ9rL/DmD9gTN5\n5StQNDHyBcMwGDNnDE7DycxLZlYsic8t42gzCq76DKrDpXhbBjxXBwY9Sd+DMxnRZASP9XrMZ6fP\ntjt5Y+FO3lyk2xGO6lSPewY0p1WdWmU+1+k0+HrNASbO3MiTI9tyXa9GtHp8XpnPe2JkW575aQtf\n3NqTPs1rc+BUOg2iggv9bJw7qvzu9V0Z3CY+r5wp157jZxn4yh9592fc2pO+zfN70a8/cIZP/0yk\nYXQIUSH+jO7SgONnM5m/+Rgvzd9ebHx/TLiQxjFlT7oUVZ/N4eT/ft/F9b0a5ZXj1Q4L5ISHO9i8\ne303OjeM5PEfNvLb1iSaxoay53jp3aUK6te8Np/f2rPQvrcW7SrxZ3hEhzp5VysLGte7MZ/8tQ+A\ndvXCmXZV50Lv9ZJKR/5+YghdninafcqMvymi8pIk2tP2LIZPL2XrFe9y1bopvD7gdQY2GmhuTFXc\nibNZbDuSSr8WOlE4eDqdj5YnMmFYKzpO+pXsEtr0rXx0UIVG0iti1s5ZPPnnk7w24DUGNRpUvoOc\n2Q/Th4A1EO5eCf7Bng3STM/Gk3nevzjv6E/c1+U+but4m9kRldvnK/bx+A+biuz/fnzvQpeFi33u\nLT3p2zyG0+k2uhbzBzs8yMr7N3bn078SWbLjBLf0a8LrBdpM/nd4a7e73Lw8f3veB4hcw9rF894N\nZf4dEFVcps3BPV+s47etSYX2f3ZLDw6cysgbbd46eThTf9nKn7tPsjMpv6xiyugOPDprY6EyKIAm\ntUPZW0b71eJsfnoYoYFWMm0Onpq9meAAP67s3oD6kcGEBlrx9ys69yM108awV5dwODkzb1+Qv4X1\nTw5ly5EUujaK4kx6NiEBVgKs+vmn07JZsOUYV3ZvUOygxmd/JfLE7M2clxDFM5e1JyEmNK9zh8Np\nYHM4af2E/rD8yEWtaRglE3crk5AAPwa0Lnrlwxckifa0w+vh/f78OXwSd2z/H58M/4Su8V3Njama\nMwyjUIeQTg0j+eaOXiW22POFDHsGPWb0YFCjQbw2oByrCh5cC5+N1stj3/gDJPTzfJBmeqU1B5r0\nYUTqaib3mczoFqPNjqjCMm2OvD+0X97Wi97NYnA4jbwWlYPbxPPb1mOlHYLBbeK5o39TXpq/nVV7\nT5X4uAZRwSz7b8U+nBccgUuICWHRQxfKpMNqbP7mo9xxzgTaiGB/3r+hGz2bxmAYBte8v4LuCVFM\nGJbfZ/1slh0FReqfk1Iz+Wv3yUKda9Kz7Ww6lML2oyk8UUzpU2ytQN64pgvXfrCiyBUUdy3alsQ7\ni3fz7Oj2tIwv+ypSRe1KOsvgaX+U/UDhc42iQ1jy8ABTzu1qEu359ZKrq2A9ie1Muu5/Gxnku0lt\nNZVSiq9u78W+k2lc1b38fbk9KdgazC3tb+HDTR+y8/ROWkS5McP7dCJ8MhKUBW5fDHXaeylKEwVH\ncTJTJ4neam/na0H+fqx5fDD+fpa8Sb9+FlXo8q/TabBi70mcTnhvyW6W7sxvox9bK5Dp4/Tv4m/u\n6E16tr1Qa8tcL1zRgavPa1Rkv7ssObHldi/5+8AZujaKqvBxReWwdt9prnjnTwDeGtuVu78oPFH2\nvoHN+feQlnm/L5VSfH1H7yLHCSth8mBcraAirR9DAqz0aBJNjybRHDidQZDVwoWt44r8XHmiJGJA\n6zifjj42jwtj5aOD8urHReVhNak7kjskiXZVTtJ8OvMkAFGB8kfJF3o1jaFX08qVjN3U7ia+3PYl\n7294n5f6v+Tak3b/Dl/foBdWueG76plAAwRHcSYrGSwQHRRtdjQeU1K3mFwWi6JPMz361q9FbXYl\npWJzGNSLCC7SFz0kwFoo2TAMg9QsO+FBnu3Ocknnejw7dwvTl+7h7eu6efTYwhybDiXnJdBAXgJ9\nY+/G3NKviU/q3x8dUUVXVC1FfHiQaSWComqrwk1pfSwwHFAcyzxFgCWAyEAZia6pIoMiubb1tcxP\nnM+e5D1lP+FQTgmHnz9c/Rkk9PV+kGYJjuKUTa/sGRHo3SXZK7PmcbVoUzfcpYWFlFIeT6BBjzSO\n7dGIXzYdJbEcda2i8nA4DS55cxkj/28ZAPUiCid8ky9tLxNIhTCBJNGuslggKIKk7GRiQ2IrRWmB\nMM+N7W4kyBrE038+TanzCmwZ8MsjYLHCHUuh5TDfBWmGoEiO29MBKryqp6i42y9oip9SfLPmgNmh\niAoY8fpSNuQsvNWhfgTLHxlI4tSLWTFxEOufHGJydELUXJJEuyM4kpO2tGpT6ynKLzoomvu63Me6\npHUsPbS05Af+9CAcXAUjX4XIhr4L0CzBkSQ7swixhhDgF2B2NDVeXHgQXRtFMW/zUZzOyj+JXBSV\nZXew/Zi+urP04QHMubdf3iBOnYggIkPkfSaEWSSJdkdQJCedmcQESRIt4OrWV1M/rD4vrX6JdFt6\n0Qcc2QD/fAk9x0PXG30foBmCo0jGSXiA92fVC9dc37sxe46n8fOmI2aHIsph9V696Ml/h7emYbS0\nYBOiMpEk2h3BUZw0bDISLQDwt/jzUPeHSExJ5N0N7xb+omHAD+MhOAr6P2xOgGYIjiLFYiHCX+oz\nK4uLO9SleVwYU3/ZhkNGo6uUtxbt4voPVwJwfa+Kd24RQniWJNFucAZFcAajWnUdEBUzuPFgRjUd\nxYwtM9ifsj//C3sWw7FNMPBxCKlBPy/BUaT4WYjwq0YLyFRxfhbF3QOacfB0Bj9vlNHoqiDT5iDh\nkbmFVvGr5YXJp0KIipEk2g2pgWE4FUQE1NyuA6Ko+7veT4BfABOWTMDutIPTCQuegIBa0P4Ks8Pz\nreAoki0WIiylt4QTvnVJp/qEBPjx04bDZociymAYRt7iPgA9EqLZ9dxFJkYkhCiJJNFuSAnSl6hr\nyaVqUUB8aDz3drmXLSe38NzK52DtR3B0I1z8ct4iPTVGcCTJFj/ClbSgr0z8LIqrujdk/uZj7Cqw\n3LOofD75MzHv9t9PDOGbO3tjLWaZbCGE+eSd6YaUQD1ZKkL+28Q5rm19LVe3uprvdnzHmsVPQf1u\n0OFKs8PyOSMokmQ/C+FIC8jK5rYLmgIw9oMVJkciSvLn7hNMmrMF0Al0VKh03hCiMpNs0A0nAvQl\n6toOmZwjClNK8Z+u/ybWUDwdFU765e+Dxc/ssHwuIyAYm1JEOM2ORJyrfmQwQ9vGk5Saxbr9p80O\nRxTj5o9WA/DEyLaSQAtRBUgS7YaknHXc4+w2kyMRlVHwpplMOnaMRH8/pm771OxwTJGC/oAZ4bCb\nHIkozqtXdya2ViATv99Ips1hdjiigIxsB1l2Jy3iwrilXxOzwxFCuECSaDeccGYDEGOXPz7iHHv+\ngDn3cUF0e65ueSWzds1i7bG1Zkflc8nZKQBEyAfNSik00MrLV3Zi+7FUpi3YYXY4ooCNh/SKhDf3\nlQRaiKpCkmg3nHJmEu5w4J+danYoojKxZcCc+3RP6LHf8J/zJlA7uDZP//U0NmfNSiZTcpNoW6bJ\nkYiS9G8ZS48m0Xy1aj9Hk+V1qiyenL0JgOHt65gciRDCVZJEuyHFkUW40wkZUk8oClj+BpxOhCs+\nhNAYgq3BjO80nr3Je1lycInZ0flUcpYeTYvIKmYFR1FpPHNpe9KzHYz73yrSs6X0xmwHT6ez7Wgq\ngVYL0VILLUSVIUm0G1JsqYQbCtJOmB2KqCyOboKlL0ObUdBsQN7uy1tcTkxQDO+sfwebo+aMRucm\n0eFZ0katMmtVpxaTLmnH9mOpjP98ndnh1Hj3fPE3AG+N7WpyJEIId0gS7YaU7BTCLf6QlmR2KKIy\nMAz4eQJYg2HYlEJfslqsPNLjEbaf3s6sXbNMCtD3krNzRqIzkk2ORJTlup6NuLhjXf7YcZxfZCVD\n0zidBusPnKF2WACD28abHY4Qwg2SRLshJSuFcL8gOHvc7FBEZbBrIez/EwY9AZGNinx5WMIwOsd2\n5qXVL7E+ab0JAfpeSlYKVhTBGWfMDkWUQSnFC1d0pEVcGONnrCu0yIfwnRfmbwPgzv7NTI5ECOEu\nSaLdkJKdQrg1VEaiBdiz4KcHIKIhdL2x2IcopZhy/hTCA8J5cPGDpNuqf51wcnYyEZZAVGYyOKWL\nTWUXFmjlx3v60Sw2lJd/3c6fu05gGNIH31cybQ7e+2MPADf0bmxyNEIId0kS7SLDMPRIdGA4pB4z\nOxxhtr8/h+QDMPJVsAaW+LCGtRrycI+HOZ5xnLsW3sX+lP0+DNL3krOSibCG6Dtn5X1SFQQH+PHM\nZe3JsjkZO30lI95Yxpn0bLPDqhE+XLYX0IurBFpr3uJMQlR1XkuilVL/U0olKaU2FdgXrZRaoJTa\nmbON8tb5PS3DnoHdsBMeHAPZqZCZYnZIwiz2bFj2KjToAc0Hl/nwYQnDuKvzXaw9tpbbfr2No2lH\nfRCkOVKyUggPCNN3ZAJuldGnWW1WPz6Y+wY2Z+uRFHo8t5BlO+X187YVe04S7O/Hv/ommB2KEKIc\nvDkS/TEw/Jx9jwALDcNoASzMuV8l5PW/Da6td6TLH5gaa/0MPQrd/2FQyqWnjO80nvcGv8fhtMPc\n9utt1ba0Izk7mYiACH1H3iNVSkSwPw8ObcXnt/SkQXQw42es5bXfdsjKhl5yLCWTpTtPcGPvxigX\nf48IISoXryXRhmEsAU6ds/tS4JOc258Al3nr/J6W17orJFbvSD/3WxM1gtMJC56Cel1cGoUuqE/9\nPkzuM5nElESu+PEKDqQe8FKQ5knOSiYiOEbfkZHoKqlfi9p8cnMP4sODeO23nYx4fSmz1x8iJbPm\ntGr0hfmb9RWpizvWNTkSIUR5+bomOt4wjNxeSkeBKtPPJ3ckOjw0ZzWp9JMmRiNMs+d3yEqGzte5\nPApd0OgWo3ljwBscSz/Gsyue9UKA5krJTiE8NE7fSa2+ZSvVXcPoEBb8+wJeu7ozyRk27v9qPd2f\n/Y2n52zG5nCaHV618Oeuk8TWCqRD/QizQxFClJNpEwsNPQW8xGngSqnblVJrlFJrjh83v6VcXhId\nlptEy0h0jbTyPQiNK7EjhysGNBrAXZ3v4s/DfzJ943QPBmcum9NGmi2NiJBY8A+RJLqKU0pxWZf6\n/DVxEB/c2J1+zWvz0fJEbv5oNbPXH5JkugIybQ6W7zrBoNZxUsohRBXm6yT6mFKqLkDOtsRecYZh\nvG8YRnfDMLrHxsb6LMCSpGanAlArvL7eISPRNU/iMtj5K5x3S6kdOVxxU7ubGNJ4CG+se4PVR1d7\nKEBzpWTlfNAMCIdadSFVFvCoDgKsFoa0jefDcd2ZMKwVK/aczBuZfnXBDk6lSScPd83ffJTULDuj\nOtUzOxQhRAX4Oon+ERiXc3scMNvH5y+33IlgoaHxYLFKEl3TOB0wbyJENII+91b4cFaLlWf6PkNc\nSFy1KevIW60wMALC60HKIZMjEp6klOLuAc3Z9sxw3hzbhXqRwby+cCeDp/3BpkOyQqU75m06Sp3w\nIPo0izE7FCFEBXizxd2XwF9AK6XUQaXULcBUYIhSaicwOOd+lZBu10l0iH8ohMRIEl3TrPoAjm6A\ngY9BQKhHDhnqH8p1ba5jT/KealHWkTsSHREYAVGN4fQ+kyMS3mD1szCyYz1+urcf/7upO07DYOT/\nLeOhb//heGqW2eFVemlZdn7ZdJSBbaSUQ4iqzuqtAxuGcW0JXxrkrXN6U7otHT/lR6BfoE6izVrt\n+AAAIABJREFUM6QmusZwOmHdJxDfHjpe7dFDj20zlrl75vL6utfpUacHHWM7evT4vpTXBjIgAsLq\nQNpx/X9nkTWdqiM/i2Jg63h+vu98Js/ZwndrD/LThsOclxBNo+gQGseE0LpOOE1qhxIe5E9ooB9W\nP/lZWJ2o/3bIKLQQVZ/XkujqJs2WRog1RI8chMTIxMKaZMssSNoCw18oV0eO0gT6BfLx8I8Z+t1Q\nPtvyGS/1f8mjx/el3DaQEYEREBYPhkNfsQkzf06D8J56kcG8e0M31u47xTuLd3MkOZM1iafJOKe/\ndHiQlRt7JzC8fR3a1QuvsaOwK/eewmpRDGpdZZpTCSFKIEm0i9Lt6YT45yxnHFobDq0zNyDhG/Zs\nWPQ8xLaBHrd55RRhAWGMbjGaT7d8Sv+G/RnZdKRXzuNteb3UA8IhLLfN3WFJomuIbo2jmT4uOu/+\n0eRMdhxL5fCZDM5m2Vm4NYk3F+3izUW7qBsRRLt6EUQE+9Okdgjx4UG0qRtOw+gQwgKt+Fmqb4K9\ncs9JOjaIIDhAlvkWoqqTJNpFaba0/CS6XhfYPEsvJhFa29zAhHeteBtO7oSx34DFe3/0bm5/M4sO\nLOKZv56hT70+RAdFl/2kSiZ3YmGtgFq6JhrgzAGo28nEqIRZ6kQEUSciKO/+rec35dCZDBZtS2LR\ntiT2n0rjxNlsvl9XuLtHrUArCbVDCbRaCA20Ui8ymCB/C4FWP6JD/YkODSTAaiHAz0KDqOAqNaqd\nnm1nw8FkbrugqdmhCCE8QJJoF6Xb0wm15kwoq91Kb08nShJdndmzYPV0aNwXWg7z6qlqB9fmtQGv\nMebHMTy74lle6f9KlUkMcp3NPkuINQQ/i5+uiQY4e8zcoESlUj8ymOt7Neb6XvpDlmEYpGc72Hcy\nnW1HU9h7Io09x9NIz7aTZXdy8HQ6mw+nkGV3kJHtwO4surRArUArXRpHUTs0wNffjtvOZNiwOw16\nNql6H5KFEEVJEu2idFuBco7wnGVaUw6bF5DwLocdZt0JyQdg1Os+OWXLqJbc1vE23t/wPl9t/4pr\nW5c0N7dyyrBnEGwN1ndCYwEFZ0tsBS8ESilCA620rRdO23rhZT7+eGoWGdkOsh0OzmY5WL//NBsO\nJfPPgTPsPXHWBxFXXOeGkfSQJFqIakGSaBel2dKoF5bTGD8sZ0JImiQI1da6T2DzTN0TurnvGsrc\n2fFOlh9azpSVU2gV1Yqu8V19du6KyrBn5H/Q9LNCSLS8R4RHxdYqvMhR54aRJkUihBAmLvtd1aTb\n0gn1zynnCI0FZYFUuVRdLZ09Dn+8CNFNYdAkn57a38+fKf2mEBUYxbh541h6cKlPz18R6fb0/JFo\n0O+TtOPmBSSEEEJ4kSTRLkq3pxNizRlls/hBSG2p96yODAO+vk73AR/zPz2i6mNNI5vyzahvAJi2\ndho2h83nMZRHoXIO0B06pJxDCCFENSVJtIsKjUQDRNTXEwtF9XJsExxYCb3u0l1YTFIntA6v9H+F\nXWd2MWXVFNPicEeRJDozWf9fCiGEENWQJNEusDvtZDoy80eiAeLawt4/9MilqD7+eAH8AqH3PWZH\nwtCEodzQ9ga+2/Ed8/bOMzucMhVJooNzJk9lpZoTkBBCCOFFkkS7IMOeAZA/aQoKTC6Ums9qY/fv\nsHWOXlSlkiwQcn/X+0kIT2DCkgk8vuxxbM7KW9qRYcso/B7pfrPentprTkBCCCGEF0kS7YI0Wxpw\nThLdsKfentlvQkTCKxZOhqgEGPi42ZHkCfQL5MNhH3JNq2uYvXs2l8++nKNpR80Oq1hFRqKjmujt\nqT3mBCSEEEJ4kSTRLki3pwPkL7YCENlIb8/sMyEi4XGn9sDhv6HbTeAfXObDfSkuJI7Hej3GxB4T\n2Z+6n8tmX8ZX277CaTjNDq2QIt058lYtlPeIEEKI6keSaBek23QSXWgkOrKh3spIdPWw6gOwWKHj\nNWZHUqKxbcby0bCPqBtal+dWPsdX274yO6Q8hmGQac8snEQHRUBwFJyWJFoIIUT1I0m0C3KT6ELd\nOQJr6YlTkkRXfU4nbJkNLYfnr0ZZSXWN78r3l3xPl7guvLfhPQ6frRyrZmY6MjEwCifRAJGNpYuN\nEEKIakmSaBcUWxMNEBID+6WFV5W3ZxGkHIK2l5kdiUssysITvZ4gw57B/Yvux+60mx1S8R80QdeY\nSzmHEEKIakiSaBek2XOSaOs5SfTJnZC02YSIhEetel9/IGp7idmRuKxFVAue6PUE205t4/5F95u+\nIEvJSXRjfbXG6TAhKiGEEMJ7JIl2QYkJQtcb9TbrrI8jEh5zNkm3tms/BqyBZkfjllHNRnFt62tZ\ncnAJM3fONDWW3Mm3RT5oxrUFRzYc32ZCVEIIIYT3SBLtgryJhecmCE0v1Fupi666Nn2vk7wu15kd\nSblM7DGRTrGdeG7lc6xPWm9aHCWWPMW11dvj230ckRBCCOFdkkS7IHeUrdhJUyA1n1WVwwZ/vQ2x\nbaBuJ7OjKRelFNMunIaf8mP8b+M5cvaIKXGUOBJduwWg4MQO3wclhBBCeJEk0S5Is6URbA3Gz+JX\n+Au5SbS08Kqa1n0Kyfth4GNmR1IhcSFxvD34bdJsabzzzzumxJA7El2k5Mk/WPdUlyRaCCFENSNJ\ntAvS7elFR9gAQmuDNQgSl/o+KFFxG78F5QcthpodSYX1rtebsW3GMmvXLFYfXe3z8xfbSz1XbCs4\nLkm0EEKI6kWSaBek2dKKTw6UgoAwyEr1fVCiYtJOwoFVeoXCKjahsCS3d7ydAEsAjyx9hCxHlk/P\nXeyqnrlqt9SdbKRDhxBCiGpEkmgXZNgyil6mztX0QllMoipa9BwYDug2zuxIPCY6KJrnz3+epPQk\nnlvxnE/PXWIHG9BJtD1TJuAKIYSoViSJdkGaPa34cg7Qi0kkH9ST1ETVkJ0OG76GBj2q7ITCkgxp\nPIThCcOZtWsW8/bO89l502xpWC1W/P38i34xtpXentjps3iEEEIIb5Mk2gUllnMAxDTTI5qn9vo2\nKFF+G76C7LNVfkJhcZRSTOk3hfYx7Zm4bCLzE+f75LwlzhsAPRINcELa3AkhhKg+JIl2QbotveRy\njvh2evv3p74LSJSfYcDCybp/cZP+ZkfjFf5+/rwx8A0ahDXgieVPsCd5j9fPmWZLI8w/rPgvhkRD\naKz0ihZCCFGtSBLtgnRbKaNssW30dtUHvgtIlN/B1ZBxGjpdoyeGVlOxIbG8cuErWJSFOxfcydls\n766qmW5LL/lqDUBQJPz9mVdjEEIIIXxJkmgXpNtLGYm2BkCbSyAs3rdBifJZ8Q74h0C3m82OxOta\nRrXk+X7PczTtKJfNvozj6ce9dq4MR0bRxYgKOplTDy2j0UIIIaoJSaLLYBgG6fb00hOEel30qoUZ\nZ3wXmHDf0mmweSZ0vg6Cws2OxicGNBrA8+c/z8mMk0xYMgHDMLxynix7FoF+pbQK/FdObfYO3012\nFEIIIbxJkugyZDoycRrOkkeiAep21NujG3wTlHDfyd2w8GloPgSGTTE7Gp+6uOnFTOw5kbXH1nLP\n7/dwKvOUx8+R5cgisLR+2w176qs1SVs9fm4hhBDCDJJEl6HE5YwLiu+gt8c2+yAi4TbDgHkTQVlg\n1Gu6BKeGGdNyDPd3vZ9lh5Yx5scxnMg44dHjZzmyCLSUkkQrpa/YHP7bo+cVQgghzCJJdBkybBlA\nCcsZ5wqLg5AYSNrio6iEW3YvhJ3zodddENHA7GhMYVEWbu1wK9OHTud05mlu/OVGj5Z2lDkSDTqJ\nPr4dsrw7yVEIIYTwBUmiy5BmzxmJLm4541xK6ZZpxySJrnQMAxY9DxENYdBTZkdjuvPqnMcVLa/g\nQOoBvtj2hceOm2nPLL0mGiC+PWDA/IkeO68QQghhFkmiy5C7nHGpEwtB94s+tAacTh9EJVy2Z5F+\nXc7/T40s4yjOg90epG1MW6aumsrUVVM9csxsR3bZSXSjXnq7TnqqCyGEqPokiS5DliMLgCBrUOkP\njGyst0lSF12pLH8dgiKg81izI6k0QvxD+PSiT+kW340ZW2dw+6+3V3iyYaYjkyC/Mt4jobWhyQX6\nduqxCp1PCCGEMJsk0WXIdmQDEOBXxihm05zV76T7QOVxaB3sWQy97oay6nVrmEC/QKYPnc7tHW9n\nxZEVPLzk4QrVSGc7sst+jwAMfFJvD6wo97mEEEKIykCS6DLkjkSXmSDEtACLv3ToqExyywa63WRq\nGJWV1WLl3i738lD3h1h5ZCWfb/28XMexOW04DEfZV2sA6nYCaxDsX1mucwkhhBCVhSTRZchNosus\n97QGgNMGy1/zQVSiTA47bJoJbS+FWrKaZGmua3MdHWM78uLqF5mfON/t52fZXXyPgH6fBIbDirf0\npE8hhBCiipIkugw2pw1wMUGIaKS3DpsXIxIu2fkrZCXrJFqUys/ix9uD3qZuaF0eXfoov+37za3n\nu/xBM1dMc709tcet8wghhBCViSTRZXC5nANgyCS9lZIO8+38VW+bDTQ3jioiIjCC94a8R1xIHI8u\ne5TTmaddfq7bSfTFL+vtgVXuhimEEEJUGpJElyFvYqHFhSQ6to3e7lvuxYhEmRw2WPsRtB4JwVFm\nR1NlNIlowv8N/D9sDht3/nYnx9Jc66CR6cgE3EiiY9tAQC04IHXRQgghqi5Josvg1ihbTDO9/W2S\n9wISZdu5QG9bDjc3jiqoeVRzXrjgBXac3sFN825i9q7ZOJyOUp+TWxNdZi/1XBYLNLsQts6BnOcK\nIYQQVY0k0WXIcmShUFgt1rIfbA2EViPAkQ0nd3s/OFG8bT/p3tCdrjE7kippaMJQXh/wOhn2DB5f\n/jj9v+nPJ5s/KfHxeSPR7rQR7DoO0k/IB04hhBBVliTRZbA5bAT6BaKUcu0Jw58HlKzKZpb0U/DP\nl9BiGPj5mx1NlXVBgwv4/arfean/S4T5h/Hympe567e7OJFxoshjM+wZgBsj0QBNcvqqr3hbunQI\nIYSokiSJLkOWIwt/d5KxqARo3Fe3uju2xWtxiRLsmAeGE7reYHYkVZ5FWRieMJwfL/uRG9rewNJD\nS7nrt7vYc6ZwV41Mux6JLnPFwoKsAXDxNH07Sd4nQgghqh5TkmilVKJSaqNSar1Sao0ZMbgqy5Hl\n+oSpXP0f1tt3eoPT6fmgRMm2/wyBEdC4n9mRVBsBfgE8fN7DTOk3hR2nd3DlnCt5fd3rrDyyErvT\nnp9Eu7LYSkG5S4Cv/dizAQshhBA+YOZI9ADDMDobhtHdxBjKlO3Idj+Jbto/f1LbyV2eD0oUL+O0\nnqzWYYyevCY8alSzUcwZPYf2tdszfeN0bv31Vh5e8jCnMk8BbpZzAEQ31dtV73s4UiGEEML7JNMo\nQ5Yjy7Ue0efqNV5vUw56NiBRstXT9bb1xebGUY01rNWQTy76hMVXLeaKFlewYN8CXlj9AuBmOQeA\nxQ9a5bxWS1/xcKRCCCGEd5mVRBvAr0qptUqp202KwSXZznKMRANENdHbX5/wbECieJkpsPpDCI2T\nBVZ8ICY4hid7P8kr/V+hXmg9gvyCCA0Idf9AF+ckzwsnezZAIYQQwstc6NvmFf0MwziklIoDFiil\nthmGsaTgA3KS69sBGjVqZEaMgC7ncGmhlXNFNc45QJpnAxLFW/sRpB6Bsd+Aq51URIVYlIWhCUMZ\nmjAUu9PuWhvIc4XX1cuAn9yl3yvlScSFEEIIE5gyEm0YxqGcbRIwC+hRzGPeNwyju2EY3WNjY30d\nYp5yl3MAdL4OTu+FxVM9G5Qoat+f4B8KLYaaHUmNVK4EOtew5/V2xdueCUYIIYTwAZ8n0UqpUKVU\nrdzbwFBgk6/jcFW5JhbmGjxJbxc/Dw67p0IS58pOh10LodPVMgpdFTUboLe/Pyu10UIIIaoMM0ai\n44FlSql/gFXAXMMw5pkQh0uyHdnlH4kOi4NBT+nbn4z0XFCisD9eAKcN2owyOxJRHn7++d1sFk6G\n3b+bG48QQgjhAp8n0YZh7DEMo1POv3aGYTzn6xjcUa4+0QWdd4ve7v8LDq31TFAi39njsOoDaHuZ\nTCisyq79CjpcqW9/NhpsGebGI4QQQpRBWtyVoUIj0QBBEdDnXn37g4GwvdIOuldNq94DewYMfNzs\nSERFKAVXTM+//1wdsGebF48QQghRBkmiy1ChiYW5hj4LPe7Qt7+8GvYuKf3xwnW7foOGvaB2C7Mj\nEZ4w9tv828/GwrHN5sUihBBClEKS6DJUaGJhQSNezL/9idTuekTSNjj8N7QabnYkwlNaDoU7CnzI\nfKcPHFxjXjxCCCFECSSJLkO2s4LlHAVNSs6/fUKWA6+wf74E5QedxpodifCkup3gtgKTC6cPgh3z\nIf2U/ieEEEJUApJEl8IwjIpPLDzX1TP09s1ucHK3545b09izYP0MaDkMwszrIy68pH43+M92IKdl\n4RdXwYtN9L+jm+DzK+T9I4QQwlSSRJfC5rQBlG/FwpK0GpF/+/+66mTQbIaha08nRcBz9eDMfnA6\nzY6qdP98BWnH87ufiOqnVh2YdAbaXFJ4/7t9dS38273MiUsIIYRAkuhSZTl0guuxcg4AiwUGP51/\n/9k4+Oo6sGWW/dzD62FqI/j5Yfjs8vz9hgGLntdfd5c9C56O1LWnALY0eK0DfHeT+8fyFYcNlr8O\ntepCU2lrV+1d/RlENIKIhlC7Zf5+R7Zr7xshhBDCCyqwVm/1l5tEe7ScA6DfA3oE9fkG+v62n+C5\neJh4CJa/BvW6wFc5db4jXoYet8GiKXpREdBt3UD3R/7jBT0iC/DHVLhwol4hEWDcT5DQTyfZlnM+\nL/08AVa9Dx2vLj7GLbML33fYwa+MH5dtc/W29cWlP66idi2EU7t1acy535eonv69sfD9hZP16obf\n3QxXfw4Wv7KPcWIX7PwVet/lnRiFEOZyOnW7TFm5VviIMgzD7BjK1L17d2PNGt/P0D9y9ghDvx/K\n5D6TGd1itOdPkHIEprUu+3F+AXrUrSJGvAyhsXB8GyScDx+PKPz1m+bqhDs7Hd6/EE5sz/9aeH1I\nOZR//6kz+pfUgdWQcUrXJW//Bb68Jv8xd62AuDb597PTYOscaDcarBX8UDL/MVjxNjxyAALDKnYs\nUTU5HTA5uvC+O5boSYkFfXktbP+58L6Lp8HcB+GmnyGhr3fj9JSjmyCiAQRHmh2JEBVjGHBsE8S1\n8+wgyK6F8PnlEBwFd6/Wizb1nwBtL/XcOUSNoZRaaxhG9zIfJ0l0yRKTExn1wyimnj+Vi5t6cXT1\n4FqYfk5ZQlQCnE4svO/medC4t7694Ck9ap2r34OQchg2fKU7VhgO18/f624YPiX//omd8GaZPzv5\nQmIg/aRrj7VY4clzHpt8CMLruTZ6kH5KTy5reRGM/cr1GEX1892/YNP3hfcNeQb63qdvH9kA751f\n+jEiGkHyfhj0JJz/H70v9Rgc2wjNB3s+ZldlpeoSrZRD+gqP06aTgwl7dOLhsIHh1B+wT+2BmGbm\nxSqEqwxDlw+e68Gt+m9AeZ1NgpdLWCugYFcsgB/u0ldLvX3FVFRpkkR7wPZT2xkzZwzTLpzGkMZD\nvHuy3D/496zJXzjEYdOXrBc/r5PkQU/mJ5qGof/QWvwgILTo8TJT9MhvnQ7w4VC9ql9BYXXgoe16\nKfL49kVHh9d9qmPCgNXTIThajzqXpu8D+o/5j/eW8bj79Sj2NTN0EvTzQ3r/Ze9A5zLa1f3zNcy6\nHW6cDU0vLP2xovrb9yfMmwhHCswHqFUXbphVeOJhw54w6Ck4uAp+m1Ty8frcB3++kX//0cPFv7+8\n7YOB+r3pjvv+huim3olHVD25Vwev/15/IEw+BI6soj8jexbr3/V974OMM3qV3YqWQxgGpB4Bv0AI\njdH3Z94GYfHw15vFP+fCR+HC/xbeN/se+PszuPRt/bfh9F5Y/gZ0/5fu2GOxwpiP4MOcD7ztx8Cm\n7wofY+IhfSVXWeCLq+HACr1/3E9wcpeewNzqoop9v6LakSTaAzYe38jYn8fy1qC3uKDBBT4/v8cZ\nBix5SSfp7cpZnuKww/yJug77yo/hrZ66ROSGH6DZAP2Y5EP6cnmriyCmBWz8Bup3h7od4T03/h/v\nXA512uffdzrgmVid8E88JPXQIp/TCZOjiv9awZEow4ADK3Vp0/91Lfu4V36iLwcrpT/UbvsJvr0J\nzrsVLn7FvRgNo+zkZP8KnTzPf7Tw/otfgbn/KfscYz7SiUbn66FWvHvxierl2Tr5gyfXz9SlDgWN\nm6PfB+d2uQmL1wM2Z4/Bxu+h87XQJ2dgJCsVAmsVf76sVPAP0b+jy7oSescS/UGxyQWw+/fCXxv/\nJ8S3g/0r4X9DXftec03Yo/8+/POl/jAw8zbXnvd4UsXLDEW1Ikm0B6w5uoab59/MB0M/oFddaafl\nEbm/2Ot3yx9pa3IB9L4Xvriy+OdM2KPLRd46L3/fuZfohEg7AS+dU9Zw3XfQwoWrSKf3wRtd9B//\nNqPgkv+DFxLyvx7TAk7uLPq8677XHyrH/VRy0jopIv+28oMHNkJE/aKPO3scXm6ef79giQnoso6Z\nt0P2WT2yeNGLutXf/hWweWbx535kv04mRM2QuEz/bn2ujvfOccsCaHCenqS7aIqe+P7bpPwJ7mUJ\nqQ0PF+jx7rDr3/0Fk+nIxnBmn77tH6q7RpVl9PvQqcBEeYcNnqld9HE3zYWPzynlCAiDRw8Vfayo\nsSSJ9oA/D//JHQvu4NOLPqVLXBefn79asmfpSYYh0XB8u/7F2eMOPaq8dQ78/qwedTv3l1xB//oV\nGvX0XcyiZpr/WPGXnluP1CPSpXl4r/4Zt2UUn9C0v0JPcNz+M+xeBF2ug08LTIBKOB9uKuMc53q3\nHxw9p4tJp2th9LvuHUdUTQufgaUvF9536dv6w9f2nM5Jd60ovr96m0tg64/QqA/s/7Pisdw0Vx/r\n9F79cxkQCsOn6rrn+HbFf7AraeR5wm7YNBOaDdQlhVEJen9orC5ZWfoy3PxL8SPJ8ybqSeig329t\nL9PlJaDn16SdyB+cyR2ZF5WHxR9qNy/7cV4gSbQHLD6wmHt/v5evRn5Fu5h2Pj9/jZedBlPOmWxy\n92qIbVn844XwtKyzYM/MH+HOnbhoz9I93t0x4DFY9FzZj7v/n/xEwR2GAZln9PbFJnpfXDu4ywNJ\nkai8Tu4uvjSp2SC4YaYudXq5he6+dNUnhZ/ntENsq8LPS9oGG7+FgY/nlx/tWgg75umJrCXVNA97\nXl+VGT4Veo0v//fz8UhIXApDJus5Ct5uV7frN70Cqqh8ohL070MTSBLtAfMT5/PQHw8x85KZtIgq\nYeav8K61H8Oq6XDdNxWbvS1ERRzdqEdF4gq0pMxK1ROnrAG6w87mmbrs6J8viz4/ty0klNzasv0Y\nPWrs5++ZmJe9Br89JR88q5vcDkUAty2CDwYU/nqdjnDzzyXXLleEYeh5MBmnYfAkfQWlOkhc5no5\nivAd/1Bo6WZdvIdIEu0Bc3bP4dFljzJ39FwahTfy+fmFEFXUzt/g6D9QpxM0H1R0NM3pgCP/QP2u\nYM+G41uL9riuqLNJMK0NdLvJ/UmQonLKOAMvNC66P6AWjHpNlwnJQiNCVJirSbSsWFgKryz7LYSo\n/loM1v9KYvHTCTTokWxPJ9AAYXE6qVr3KfT/r74vqq4N38LMW4v/2qMHfRuLEAKQJLpU2TmrBHp8\n2W8hhPCFCybAhq/h78/h/AfNjkaU15wHYO1H+fefPAUoXbt8bk2zEMJnpNFuKSSJFkJUabVb6BrZ\nbT/pelZR9Tgd+Qn0pW/r9p4WP93RqNPVUK+zufEJUYNJEl2K3HIOf09N9BFCCF/rcr3uyZ641OxI\nRHkczlmNs+2l1WcinxDVhCTRpchyZGFRFqxKql6EEFVU13EQVgcWPW92JMJdSdtg+kB9e4RMDhWi\nspEkuhTZjmwC/QJRMttZCFFV+QdBv3/rRTTOXWJZVF4zroK3CywqFSYLgQhR2UgSXYpsZ7Z05hBC\nVH1db9DbDd+aG4dwzaQI2Dk///5/95kXixCiRJJElyLbkU2ARZJoIUQVFxCqlwDf9L1e7EVUXjt/\ny7995zI9kTA40rx4hBAlkiS6FFmOLBmJFkJUD73vBkcWfDXW7EhESc7shxk5S1DfPA/qdDA3HiFE\nqSSJLkWWI0va2wkhqoc6HaBeFzi8Dk7uNjsaUZzpQ/S29Uho3NvcWIQQZZIkuhQ2h02SaCFE9XHt\n1xAQBnMf1P2HReXhsMHZo/r2NTPMjUUI4RJJoksh5RxCiGqlVjwMew72LIa/3jI7GlHQ0Y16O+gp\nc+MQQrhMkuhSSBIthKh2uo6D2Naw8j3ITjM7GpFr+et62/Eqc+MQQrhMkuhSZDukxZ0QoppRCka8\nBCkH4evrwWE3OyKRlQpbftC3IxqYG4sQwmWSRJciy5lFoEVqooUQ1UyTC6DPfXrxlXn/NTsa8cN4\nvb3oJXPjEEK4RZLoUsjEQiFEtTXoSajfHVZPz6/HFebYOkdvz7vF3DiEEG6RJLoUUhMthKi2/Px1\nF4iQGHh/AGyba3ZENdOKd/W237/B4mduLEIIt0gSXQpJooUQ1VqtOnD7Yp1I/zwBkg+ZHVHN4nTm\nl9P0vd/cWIQQbpMkuhTZjmwp5xBCVG+RjWDI05ByCF5tC9/fqnsWC+9b+5He9r0fgqPMjUUI4TZJ\nokshI9FCiBqh0zVw2yJoMwo2fgtvngdJW82Oqvrb/bveDppkahhCiPKRJLoEhmFgc8rEQiFEDVG/\nK1z1GVz0ImSegS+ugu3zzI6q+so6q+vQu90MFvlTLERVJO/cEmQ7swFkJFoIUXMoBT3vgLHfQupR\n+PJq+PwKOLoJDMPs6KqXzbMAA9pdZnYkQohykiS6BFmOLAACLJJECyFqmIbnwcSDumPpm41KAAAL\nE0lEQVTE7kXwbl94owus+UiSaU/ZtxyUHyRcYHYkQohykiS6BNkOPRIt5RxCiBrJGgiDJ8H9/8Cg\np/Qo9U8PwM8P6ZFpUX5OB+xaCG0vlVIOIaowefeWIG8kWso5hBA1WWRDOP9BuHsVtB+jF2d5ty98\nMEiXJMiy4e7btRDSkqDdaLMjEUJUgCTRJZCRaCGEKMDPH8Z8qJPpCybAqd3w7U3w/oW6flq4bvMs\nCIqElsPNjkQIUQGSRJdAkmghhChGbCsY+Djctx4GPw1JW+Dt3rD8DbBnmx1d5WfPgn++gBZDwSpX\nOoWoyqxmB1BZ5ZZz+Pv5mxyJEEJUQsGR0O8BaNwHfrwPFjwBaz6EViMgqglEN4G4thBeT9dTC+3g\nGr1tcr65cQghKkyS6BLkJtEyEi2EEKVo2APuXAZ/fwbLX4PVH0LO708ArEEQFAERDaHXeGg5DAJr\nmRev2fYtB5Re2EYIUaWZkkQrpYYDrwN+wHTDMKaaEUdppJxDCCFc5GeF7jfrf4YByQfgxE44vl3f\nzkrVq/N9fwtY/CGhH9Trokezo5tBeF09au0fbPZ34n2JyyC+vSzzLUQ14PMkWinlB7wFDAEOAquV\nUj8ahrHF17GUJjeJlu4cQgjhBqUgspH+13xQ/n57FuxdCjt/hZ3zYc9i4Jye02HxesS6dgvdYi8g\nTN/3D9Ij2iEx+p81EPwCISxWj3JXFfZsOLAKuo0zOxIhhAeYMRLdA9hlGMYeAKXUV8ClQKVKorOc\nUs4hhBAeYw2EFoP1P17UI9bpp+B0IpzeC8c26dHrk7sgcTnYMyH9JBiO0o9bvzs06gWhtX3xXVTM\n2eNgz9B15EKIKs+MJLo+cKDA/YNATxPiKFXeSLSsWCiEEJ6nFITG6H8NukGHMUUfY8+G7LM6oc5O\nh5SDYMvQo9pZKXBoHRxZDyveBsPp+++hPIIiIUEmFQpRHVTaiYVKqduB2wEaNWrk8/P3qdeH6UOn\nExsS6/NzCyGEQLeAs0bn36/dvPDXu96ot/bsskesKwuLv64hF0JUeWa8kw8BDQvcb5CzrxDDMN4H\n3gfo3r27ce7Xva12cG1qB1eBy4NCCFHTSb9lIYQJzFhsZTXQQinVRCkVAFwD/GhCHEIIIYQQQpSL\nz0eiDcOwK6XuAeajW9z9zzCMzb6OQwghhBBCiPIypTDLMIyfgZ/NOLcQQgghhBAVZUY5hxBCCCGE\nEFWaJNFCCCGEEEK4SZJoIYQQQggh3CRJtBBCCCGEEG6SJFoIIYQQQgg3SRIthBBCCCGEmySJFkII\nIYQQwk2SRAshhBBCCOEmSaKFEEIIIYRwkyTRQgghhBBCuEmSaCGEEEIIIdwkSbQQQgghhBBuUoZh\nmB1DmZRSx4F9Jpy6NnDChPOK0snrUvnIa1I5yetS+chrUjnJ61L5mPmaNDYMI7asB1WJJNosSqk1\nhmF0NzsOUZi8LpWPvCaVk7wulY+8JpWTvC6VT1V4TaScQwghhBBCCDdJEi2EEEIIIYSbJIku3ftm\nByCKJa9L5SOvSeUkr0vlI69J5SSvS+VT6V8TqYkWQgghhBDCTTISLYQQQgghhJskiS6BUmq4Umq7\nUmqXUuoRs+Op6ZRSDZVSi5RSW5RSm5VS95sdk8inlPJTSv2tlPrJ7FgEKKUilVLfKaW2KaW2KqV6\nmx2TAKXUv3N+f21SSn2plAoyO6aaRin1P6VUklJqU4F90UqpBUqpnTnbKDNjrIlKeF1eyvkdtkEp\nNUspFWlmjMWRJLoYSik/4C3gIqAtcK1Sqq25UdV4duA/hmG0BXoBd8trUqncD2w1OwiR53VgnmEY\nrYFOyGtjOqVUfeA+oLthGO0BP+Aac6OqkT4Ghp+z7xFgoWEYLYCFOfeFb31M0ddlAdDeMIyOwA5g\noq+DKosk0cXrAewyDGOPYRjZwFfApSbHVKMZhnHEMIx1ObdT0UlBfXOjEgBKqQbAxcB0s2MRoJSK\nAC4APgQwDCPbMIwz5kYlcliBYKWUFQgBDpscT41jGMYS4NQ5uy8FPsm5/QlwmU+DEsW+LoZh/GoY\nhj3n7gqggc8DK4Mk0cWrDxwocP8gkrBVGkqpBKALsNLcSESO14CHAafZgQgAmgDHgY9ySmymK6VC\nzQ6qpjMM4xDwMrAfOAIkG4bxq7lRiRzxhmEcybl9FIg3MxhRrH8Bv5gdxLkkiRZVilIqDPgeeMAw\njBSz46nplFIjgSTDMNaaHYvIYwW6Au8YhtEFSEMuT5sup872UvSHnHpAqFLqenOjEucydMsyaVtW\niSilHkOXdM4wO5ZzSRJdvENAwwL3G+TsEyZSSvmjE+gZhmHMNDseAUBf4BKlVCK67GmgUupzc0Oq\n8Q4CBw3DyL1S8x06qRbmGgzsNQzjuGEYNmAm0MfkmIR2TClVFyBnm2RyPCKHUuomYCRwnVEJezJL\nEl281UALpVQTpVQAevLHjybHVKMppRS6xnOrYRjTzI5HaIZhTDQMo4FhGAno98nvhmHI6JqJDMM4\nChxQSrXK2TUI2GJiSELbD/RSSoXk/D4bhEz4rCx+BMbl3B4HzDYxFpFDKTUcXSp4iWEY6WbHUxxJ\noouRU8h+DzAf/UvuG8MwNpsbVY3XF7gBPdK5PuffCLODEqKSuheYoZTaAHQGppgcT42Xc2XgO2Ad\nsBH997fSr8hW3SilvgT+AloppQ4qpW4BpgJDlFI70VcMppoZY01UwuvyJlALWJDzN/9dU4MshqxY\nKIQQQgghhJtkJFoIIYQQQgg3SRIthBBCCCGEmySJFkIIIYQQwk2SRAshhBBCCOEmSaKFEEIIIYT4\n//buIFSqMgzj+P+JFhLXgqwwgjZWpIv0glwkKQ3CoH2rqEVtgqxMamdgUKQgRqsIxI3UxgoKIrxR\nIHQJvIFcr1mbpEUQlLnpUkrk22K+i0cRYfBcnPH+fzDMfGe+88w5sxhePt45Z0gW0ZIkSdKQbr7e\nByBJy0mSVcDXbbga+A/4o43/rqre72KXZBLYXlXP95S3ncGxHuwjT5LGkdeJlqTrJMluYKGq9i3x\n5xwG3qqquZ7ybgFmqmqyjzxJGke2c0jSiEiy0J63Jjma5LMkp5PsSfJ0kmNJ5pOsafPuTPJJktn2\n2HyFzJXAQ4sFdJItnbt+Hm/vk+T1lnEiyZud/Z9t2+aSHAJot+D9JcnU0n8rkjSabOeQpNG0HlgL\nnAVOAweqairJKwxu670DeA94t6q+TXIvcKTt07URONkZvwa8WFUzSSaAc0m2AfcDU0CAz5M8CvwJ\n7AIerqozSW7v5HwPPAIc6/WsJWlMWERL0miararfAJL8DEy37fPAY+3148C6JIv73JpkoqoWOjl3\nc7HnGmAG2J/kQ+DTqvq1FdHbgONtzgSDono9cLiqzgBU1dlOzu/Ag9d+mpI0niyiJWk0ne+8vtAZ\nX+Dib/dNwKaqOneVnH+AFYuDqtqT5AvgSWAmyRMMVp/fqaoPujsmeekquStatiQtS/ZES9L4mmbQ\n2gFAkg1XmPMjcF9nzpqqmq+qvcAsg9XkI8Bzrb2DJPckuQv4BniqXVGEy9o5HuDSNhFJWlYsoiVp\nfL0MbGx//DsFvHD5hKr6Cbht8Q+EwI4kJ5OcAP4FvqyqaeAj4Lsk88DHwMqq+gF4GziaZA7Y34ne\nDHy1ZGcmSSPOS9xJ0g0uyavAX1V1oKe8SWBnVT3TR54kjSNXoiXpxvc+l/ZYX6s7gDd6zJOkseNK\ntCRJkjQkV6IlSZKkIVlES5IkSUOyiJYkSZKGZBEtSZIkDckiWpIkSRrS/6NIqXxNteZPAAAAAElF\nTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7f5aeef85290>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "for i in range(NITER):\n",
    "    sim.reset()\n",
    "    sim.setCompConc('comp', 'molA', 31.4e-6)\n",
    "    sim.setCompConc('comp', 'molB', 22.3e-6)\n",
    "    run(i,0,2001)\n",
    "    sim.setCompReacActive('comp', 'kreac_f', False)\n",
    "    run(i,2001,4001)\n",
    "    sim.setCompReacActive('comp', 'kreac_f', True)\n",
    "    run(i,4001,6001)\n",
    "    sim.setCompReacActive('comp', 'kreac_b', False)\n",
    "    run(i,6001,8001)\n",
    "    sim.setCompReacActive('comp', 'kreac_b', True)\n",
    "    run(i,8001,10001)\n",
    "    sim.setCompReacActive('comp', 'kreac_f', False)\n",
    "    sim.setCompReacActive('comp', 'kreac_b', False)\n",
    "    run(i,10001,12001)\n",
    "    \n",
    "\n",
    "res_mean = numpy.mean(res, 0)\n",
    "\n",
    "plt.figure(figsize=(12,7))\n",
    "# Plot mean number of molecules of 'molA' over the time range:\n",
    "plt.plot(tpnt, res_mean[:,0], label = 'A')\n",
    "# Plot mean number of molecules of 'molB' over the time range:\n",
    "plt.plot(tpnt, res_mean[:,1], label = 'B')\n",
    "# Plot mean number of molecules of 'molC' over the time range:\n",
    "plt.plot(tpnt, res_mean[:,2], label = 'C')\n",
    "\n",
    "plt.xlabel('Time (sec)')\n",
    "plt.ylabel('#molecules')\n",
    "plt.legend()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}